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ABSTRACT
Existing methods towards outfit compatibility modeling seldom ex-
plicitly consider multimodal correlations. In this work, we explore
the consistent and complementary correlations for better compati-
bility modeling. This is, however, non-trivial due to the following
challenges: 1) how to separate and model these two kinds of cor-
relations; 2) how to leverage the derived complementary cues to
strengthen the text and vision-oriented representations of the given
item; and 3) how to reinforce the compatibility modeling with text
and vision-oriented representations. To address these challenges,
we present a comprehensive multimodal outfit compatibility model-
ing scheme. It first nonlinearly projects eachmodality into separable
consistent and complementary spaces via multi-layer perceptron,
and then models the consistent and complementary correlations
between two modalities by parallel and orthogonal regularizations.
Thereafter, we strengthen the visual and textual representation of
items with complementary information, and further induct both the
text-oriented and vision-oriented outfit compatibility modeling. We
ultimately employ the mutual learning strategy to reinforce the fi-
nal performance of compatibility modeling. Extensive experiments
demonstrate the superiority of our scheme.
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1 INTRODUCTION
In modern society, clothing plays an increasingly important role
in people’s social life, as a compatible outfit can largely improve
one’s appearance. Nevertheless, not all people grow keen sense
of aesthetics, and hence often find it difficult to make compatible
outfits. To this end, outfit compatibility modeling, aiming to auto-
matically evaluate the compatibility of a given outfit, has become
an emerging research topic.

Existingmethods on outfit compatibilitymodeling can be roughly
classified into three groups: pair-wise, list-wise, and graph-wise
modeling. The pair-wise modeling [9, 22] mainly justifies the com-
patibility between two items. It is, however, suboptimal when justi-
fying outfits with more than two items, since it lacks a global view
of the outfit. As to the list-wise one, it deems the outfit as a list of
items in a predefined order and evaluates the outfit compatibility
with neural networks, like Bi-directional Long Short-Term Memory
(Bi-LSTM) [5, 10]. Notably, the underlying assumption is somehow
inappropriate by treating a set of unstructured items as an ordered
sequence. Moving one step forward, recent studies organize the
outfit as an item graph and employ graph neural networks to fulfil
the compatibility modeling task. Despite the significance of existing
methods, they mainly focus on exploring the visual modality of the
fashion items, and seldom investigate the item’s textual aspect, i.e.,
the textual description. In fact, textual descriptions of fashion items
usually contain the key features, which benefit the item representa-
tion learning. Although some studies have attempted to incorporate
the textual modality, they simply adopt the early/late fusion or con-
sistency regularization to boost the performance. Nevertheless, the
correlations among multimodalities are complex and sophisticated,
which are not clearly separated and explicitly modeled yet.

In this work, we work towards outfit compatibility modeling via
exploiting the multimodal correlations. It is, however, non-trivial
considering the following facts. 1) In a sense, the visual and textual
modalities characterize the same item, and thus should share certain
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Figure 1: Illustration of the consistent and complementary
correlations between the visual and textual modalities. In
(a), both the text and image reflect the color (Dark Blue)
and category (Shorts) of the item. In (b), the text reveals the
item’s material (Leather) and brand (New Ace) that is hardly
derived visually, but fails to describe the pattern (Stripe) po-
sition.

consistency. As shown in Figure 1 (a), both the visual and textual
modalities deliver the item’s features of “color” and “category”.
Meanwhile, the user-generated text may provide complementary
information to the visual image, like the item brand “New Ace” and
material “Leather” in Figure 1 (b), yet certain features are hard to
be described by textual sentences but easy to be visualized by the
image, like the stripe position of the item in Figure 1 (b). Consistent
and complementary contents are often mixed in each modality and
may be nonlinearly separable. Therefore, how to explicitly separate
and model them poses one challenge. 2) How to leverage the corre-
lation modeling results to strengthen the text and vision-oriented
representation of the given item forms another challenge. And 3)
outfit compatibility modeling can be derived separately from vision
or text-oriented representations, which indeed characterizes the
item from different angles. We argue that these two kinds of mod-
eling share certain common knowledge on the outfit compatibility
evaluation and are capable of reinforcing each other. How to get
the two kinds of modeling mutually enhanced and thus boost the
final compatibility modeling result constitutes the last challenge.

To address the aforementioned challenges, we devise a com-
prehensive MultiModal Outfit Compatibility Modeling scheme,
MM-OCM for short. As shown in Figure 2, MM-OCM consists
of four components: a) multimodal feature extraction, b) multi-
modal correlation modeling, c) compatibility modeling, and d) mu-
tual learning. The first component extracts the textual and visual
features of the given item via two separate Convolution Neural
Networks (CNNs) [34] and Long Short-Term Memory (LSTM) net-
works [13], respectively. The reason of introducing two separate
feature extractors is to facilitate the later mutual learning. As to the
second component, it aims to separate and model the consistent
and complementary correlations. Considering the fact that these
two kinds of correlations may be not separable in the original visual
and textual feature spaces, we therefore employ the multi-layer
perceptrons to nonlinearly project the image/text feature into the
consistent and complementary space, where the multimodal con-
sistency and complementarity can be captured, respectively. In the
third component, we incorporate the disengaged complementary
content in the textual (visual) modality to complement the visual

(textual) feature embedding and obtain the text (vision)-oriented
representation. Thereafter, we build two independent graph con-
volutional networks to model outfit compatibility, namely text-
oriented compatibility modeling (T-OCM) and vision-oriented com-
patibility modeling (V-OCM). Ultimately, the fourth component
targets at mutually transferring knowledge from one compatibility
modeling to guide the other one. Once MM-OCM converges, we
average the compatibility scores predicted by T-OCM and V-OCM
as the final result. Extensive experiments on the real-world dataset
demonstrate the superiority of our MM-OCM scheme as compared
to several state-of-the-art baselines. As a byproduct, we released
the codes to benefit other researchers1.

The contributions of this work are threefold:
• To the best of our knowledge, we are the first to fulfill the
outfit compatibility modeling via clearly separating and ex-
plicitly modeling the consistent and complementary correla-
tions among multiple modalities.

• We propose to strengthen the text (vision)-oriented represen-
tation of the given item by incorporating the complementary
information embedded in the visual (textual) modality. Based
upon these two kinds of representations, we build two par-
allel networks to model the outfit compatibility.

• We introduce the mutual learning strategy in the context
of compatibility modeling, which reinforces each other via
knowledge sharing.

The rest of the paper is organized as follows. Section 2 briefly
reviews the related work. In Section 3, we detail the proposed MM-
OCM scheme. The experimental results and detailed analyses are
given in Section 4, followed by the conclusion and future work in
Section 5.

2 RELATEDWORK
Our work is related to fashion compatibility modeling and deep
mutual learning.

2.1 Fashion Compatibility Modeling
Existing methods on fashion compatibility modeling can be roughly
grouped into three categories: pair-wise methods [9, 21, 25, 26, 33,
38, 39], list-wise methods [10], and graph-wise methods [2, 3]. The
first category focuses on studying the compatibility between two
items. For example, McAuley et al. [26] used the linear transforma-
tion to map items into a latent space, where the compatibility rela-
tion between items can be measured. Following that, Song et al. [33]
proposed a multimodal compatibility modeling scheme, where neu-
ral networks are used to model the compatibility between fashion
items with the Bayesian Personalized Ranking (BPR) [32] optimiza-
tion. Later, Vasileva et al. [36] studies the compatibility for the outfit
with multiple fashion items based on the pairwise modeling, where
the item category information is additionally considered.

One key limitation of this category is that it lacks a global view
of the outfit and can hardly generate the optimal solution. As to the
second category, it regards the outfit as a sequence of items in a fixed
pre-predefined order. For example, Han et al. [10] employed the Bi-
LSTMnetwork to uncover the outfit compatibility. It is worth noting

1https://site2750.wixsite.com/mmocm.
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that the underlying assumption used by the list-wise methods, i.e.,
the outfit can be represented as a sequence of ordered items, is
questionable. Approaches in the third category model each outfit as
an item graph and turn to graph neural networks [7, 19, 30] to fulfil
the outfit compatibility modeling task. For example, Cui et al. [3]
proposed Node-wise graph Neural Networks (NGNN) to promote
the item representation learning. In addition, Cucurull et al. [2]
addressed the problem using a graph neural network that learns to
generate product embeddings conditioned on their context.

Although these studies have achieved significant success, they
mainly focus on either simply exploring the visual modality of the
outfit, or considering both the visual and textual modalities, while
overlooking the sophisticated multimodal correlations.

2.2 Deep Mutual Learning
The idea of deep mutual learning is developed from the knowledge
distillation, which was first introduced by Hinton et al. [12] for
transferring the knowledge from a large cumbersome model to a
small one, so as to improve the model portability. In particular, Hu et
al. [16] designed an iterative teacher-student knowledge distillation
approach, where the teacher network grasps certain knowledge,
while the student one iteratively mimics the teacher’s solution to
a certain problem in order to improve its own performance. After
that, the teacher-student knowledge distillation scheme attracts
lots of attention [8, 43]. However, in many cases, it might be too
difficult to obtain a teacher network with the clear domain knowl-
edge. Accordingly, Zhang et al. [44] proposed a deep mutual learn-
ing method for the classification task, where there is no explicit
static teacher but an ensemble of student learning collaboratively
throughout the training process. Thereafter, many researchers have
investigated the deep mutual learning in various domains, such
as person re-identification [6, 40], image retrieval [37], and deep
metric learning [31]. Despite the value of mutual learning in these
fields, its potential in outfit compatibility modeling has been largely
unexplored, which is the major concern of this work.

3 METHODOLOGY
In this section, we first formulate the research problem and then
detail the proposed MM-OCM scheme.

3.1 Problem Formulation
We deem the outfit compatibility modeling task as a binary classifi-
cation problem. Suppose that we have a training set Ω composed
of 𝑁 outfits, i.e, Ω = {(𝑂𝑖 , 𝑦𝑖 ) |𝑖 = 1, · · · , 𝑁 }, where 𝑂𝑖 is the 𝑖-
th outfit, and 𝑦𝑖 denotes the ground truth label. We set 𝑦𝑖 = 1 if
the outfit 𝑂𝑖 is compatible, and 𝑦𝑖 = 0 otherwise. Given an arbi-
trary outfit 𝑂 , it can be represented as a set of fashion items, i.e.,
𝑂 = {𝑜1, 𝑜2, · · · , 𝑜𝑚}, where 𝑜𝑖 is the 𝑖-th item, associated with
a visual image 𝑣𝑖 and a textual description 𝑡𝑖 . The symbol m is a
variable for different outfits, considering that the number of items
in outfits is not fixed. Based on these training samples, we target
at learning an outfit compatibility model F that is able to judge
whether the given outfit 𝑂 is compatible or not,

𝑠 = F
(
{(𝑣𝑖 , 𝑡𝑖 )}𝑚𝑖=1 |𝚯

)
, (1)

where 𝚯 is a set of to-be-learned parameters of our model, and 𝑠
denotes the probability the given outfit is compatible.

3.2 MM-OCM
Based upon the research problem and notations, we present the
comprehensiveMultiModalOutfitCompatibilityModeling scheme,
MM-OCM. As shown in Figure 2, it consists of four key compo-
nents: (a) multimodal feature extraction, (b) multimodal correlation
modeling, (c) compatibility modeling, and (d) mutual learning.

3.2.1 Multimodal Feature Extraction. We first introduce the visual
and textual feature extraction.

Visual Feature Extraction. To extract visual features, we utilize the
CNNs, which have shown compelling success in many computer
vision tasks [11, 14, 15, 23, 24, 28, 42]. As to facilitate the mutual
enhancement between the T-OCM and the V-OCM, which are al-
ternatively optimized, we employ two separate CNNs to extract the
visual features. Specifically, given the outfit 𝑂 , the visual feature of
the 𝑖-th item in the outfit can be obtained as follows,{v̂𝑖 = CNN1 (𝑣𝑖 ) ,

ṽ𝑖 = CNN2 (𝑣𝑖 ) ,
(2)

where v̂𝑖 ∈ R𝑑𝑣 and ṽ𝑖 ∈ R𝑑𝑣 refer to the visual features to be
processed by the following T-OCM and V-OCM, respectively. The
symbol 𝑑𝑣 is the dimension of the extracted visual feature embed-
ding. CNN1 and CNN2 denotes the corresponding CNNs for the
T-OCM and V-OCM, respectively.

Textual Feature Extraction. Due to its prominent performance in
textual representation learning [1, 17, 27, 29, 41], we adopt LSTM to
extract the textual feature of the given item2. Similar to the visual
feature extraction, we also use two separate LSTMs, i.e., LSTM1
and LSTM2, to obtain the textual features for T-OCM and V-OCM,
respectively. Formally, we have{

t̂𝑖 = LSTM1 (𝑡𝑖 ) ,
t̃𝑖 = LSTM2 (𝑡𝑖 ) ,

(3)

where t̂𝑖 ∈ R𝑑𝑡 and t̃𝑖 ∈ R𝑑𝑡 refer to the text features for the follow-
ing T-OCM and V-OCM, respectively. 𝑑𝑡 is the feature dimension.
To facilitate the multimodal fusion, we set 𝑑𝑡 = 𝑑𝑣 = 𝑑 in this work.

3.2.2 Multimodal Correlation Modeling. As illustrated in Figure 1,
we argue that the visual image and textual description may possess
certain consistency and complementarity information. Inspired by
this, instead of unreasonably fusing the general multimodal features,
we propose to clearly separate and explicitly model the consistent
and complementary contents of each modality, whereby we expect
the consistent content of a modality is able to capture the alignment
information between two modalities, and the complementary one
of a modality is able to encode the supplement information to the
other modality.

In particular, we first introduce two MLPs to separate the con-
sistent and complementary parts of each modality, respectively.
Mathematically, we have{

v̂𝑠𝑖 = MLP𝑠𝑣 (v̂𝑖 ) , t̂𝑠𝑖 = MLP𝑠𝑡
(
t̂𝑖
)
,

v̂𝑝
𝑖
= MLP𝑝𝑣 (v̂𝑖 ) , t̂𝑝𝑖 = MLP𝑝𝑡

(
t̂𝑖
)
,

(4)

2Before fed into the LSTM, the text is first tokenized into standard vocabularies.
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Figure 2: Illustration of the proposedMM-OCM scheme. It consists of four key components: (a) multimodal feature extraction,
(b) multimodal correlation modeling, (c) compatibility modeling, and (d) mutual learning.

where v̂𝑠
𝑖
and v̂𝑝

𝑖
respectively denote the consistent and comple-

mentary representation of the visual modality, and t̂𝑠
𝑖
and t̂𝑝

𝑖
denote

that of the textual modality. It is noteworthy that the consistent and
complementary parts are probably inseparable within the original
low dimensional space. After non-liner mapping via MLPs, we are
capable of projecting them into a high dimensional space, whereby
the consistent and complementary parts are distinguishable.

We then argue that the consistent representations of the two
modalities are parallel, and the complementary representations are
orthogonal. Accordingly, to regulate the consistent and comple-
mentary representations, we use the following objective functions:

L𝑠 =

𝑚∑
𝑖=1

{cos(v̂𝑠𝑖 , t̂
𝑠
𝑖 )

2 + cos(ṽ𝑠𝑖 , t̃
𝑠
𝑖 )

2},

L𝑝 =

𝑚∑
𝑖=1

{[cos(v̂𝑝
𝑖
, t̂𝑝
𝑖
) − 1]2 + [cos(ṽ𝑝

𝑖
, t̃𝑝
𝑖
) − 1]2}.

(5)

where L𝑠 and L𝑝 refer to the consistent and complementary regu-
larizations, respectively.

3.2.3 CompatibilityModeling . Wehere first introduce the text/vision-
oriented representation learning for each item, and we then present
the text/vision-oriented compatibility modeling.

Text/Vision-oriented Representation Learning. Based upon the
component of multimodal correlation modeling, we are able to
derive the complementary cues of the textual (visual) modality

from the visual (textual) one. Distinguished from the consistent
parts that are shared between modalities, complementarity means
exclusive and supplement information. Inspired by this, to learn
comprehensive item representations and hence boost the outfit com-
patibility modeling performance, we introduce two multimodal fu-
sion strategies: text-oriented multimodal fusion and vision-oriented
multimodal fusion. As to the first one, we take the textual feature
extracted by LSTM as the basis and additionally incorporate the
complementary representation of the visual modality. By contrast,
in the latter fusion strategy, we strengthen the visual feature ex-
tracted by CNN with the complementary representation of the
textual modality. Specifically, based upon the consistent and com-
plementary representation of each modality, we can derive the
final item representations from different fusion schemes, which are
achieved as follows, {

ô𝑖 = t̂𝑖 + v̂𝑝
𝑖
,

õ𝑖 = ṽ𝑖 + t̃𝑝
𝑖
,

(6)

where ô𝑖 and õ𝑖 denote the final item representation based on the
text-oriented multimodal fusion and vision-oriented multimodal
fusion, respectively.

Text/Vision-oriented Compatibility Modeling. Similar to previous
studies, we employGraphConvolutional Network (GCN) to flexibily
model the compatibility of the outfit with variable number of items.
In particular, we adopt two GCNs, one for the T-OCM, while the
other for the V-OCM. Regarding the limited space, we take the



T-OCM as an example, since the V-OCM can be derived in the same
way. In particular, for each outfit O composed of m fashion items,
we first construct an indirected graph G = (E,R). E = {𝑜𝑖 }m𝑖=1 is
the set of nodes, corresponding to the items of the given outfit 𝑂 .
Meanwhile, R =

{(
𝑜𝑖 , 𝑜 𝑗

)
|𝑖, 𝑗 ∈ [1, · · · ,m]

}
stands for the set of

edges. In this work, for each pair of items 𝑜𝑖 and 𝑜 𝑗 in the outfit,
we introduce an edge. During learning, each node 𝑜𝑖 is associated
with a hidden state vector h𝑖 , which keeps dynamically updated
to fulfil the information propagation over the graph. For T-OCM,
we initialize the hidden state vector for the 𝑖-th node based on the
text-oriented representation of the 𝑖-th item, namely, h𝑖 = ô𝑖 .

The information propagation from the item 𝑜 𝑗 to item 𝑜𝑖 is de-
fined as follows:

m𝑗→𝑖 = 𝜙 [W𝑝𝑝 (h𝑖 ⊙ h𝑗 ) + 𝒃𝑝𝑝 ], (7)

where W𝑝𝑝 ∈ Rd×d and b𝑝𝑝 ∈ Rd denote the weight matrix and
bias vector to be learned; 𝜙 (·) is a nonlinear activation function,
which is set as LeakyReLU; h𝑖 ⊙ h𝑗 accounts for the interaction
between the fashion item 𝑜𝑖 and 𝑜 𝑗 ; ⊙ is the element-wise product
operation. By summarizing the information propagated from all
neighbours, the hidden state vector corresponding to the item 𝑜𝑖
can be updated as follows,

h∗𝑖 = 𝜙 (W0h𝑖 + b0) +
∑

𝑜 𝑗 ∈N𝑖

m𝑗→𝑖 , (8)

where W0 ∈ Rd×d and b0 ∈ Rd denote the weight matrix and bias
vector to be learned; N𝑖 stands for the set of neighbour nodes of
the node 𝑜𝑖 and h∗

𝑖
∈ Rd is the updated hidden representation of

the item 𝑜𝑖 .
We ultimately feed the updated item representation to a MLP,

consisting of two fully-connected layers, to derive its probability
of being a compatible outfit as follows,

s𝑖𝑡 = W2
[
𝜓
(
W1h∗𝑖 + b1

) ]
+ b2,

s𝑡 = 𝜎

( 1
m

m∑
𝑖=1

s𝑖𝑡
)
,

(9)

where W1, b1, W2, and b2 are the to be learned layer parameters.
𝜓 (·) refers to the Relu active function, and 𝜎 (·) denotes the Sigmoid
function to ensure the compatibility probability falling in the range
of [0, 1]. Notably, in the same way, we can derive the compatible
probability of the outfit by V-OCM, which is termed as s𝑣 .

3.2.4 Mutual Learning. In a sense, no matter the text-oriented item
representation or the vision-oriented one, i.e., ô𝑖 and õ𝑖 , both of
them fuse the multimodal data of an item. Therefore, the infor-
mation encoded by these two representations should be largely
aligned, and hence the corresponding outfit compatibility model-
ing should yield similar outputs. Meanwhile, since they emphasize
the different aspects of the item and therefore may complement
each other from a global view. Therefore, the knowledge learned
by one compatibility modeling could be able to guide the other one.
Inspired by this, we turn to the deep mutual learning knowledge
distillation scheme to regularize these two compatibility modeling
results, making them mutually reinforced.

Unlike the traditional teacher-student knowledge distillation
network, mutual learning replaces the one way knowledge trans-
ferring from the static pre-trained teacher to the student with the

Algorithm 1 The Training Procedure of Our MM-OCM.

Input: Training set Ω, hyper-parameters 𝜆, 𝜂, and 𝜇.
Output: Parameters Θ1 in the T-OCM, and parameters Θ2 in the

V-OCM.
1: Initialize neural network parameters Θ1 and Θ2.
2: repeat
3: Sample minibatch from Ω.
4: Update the parameters Θ1 according to L𝑡 in Eqn.(12).
5: Update the parameters Θ2 according to L𝑣 in Eqn.(12).
6: until Convergence

mutual knowledge distillation. In particular, an ensemble of student
networks are employed to learn collaboratively. In our context, the
T-OCM and the V-OTM can be treated as two student networks,
and optimized alternatively. Namely, in each iteration, we only
train one student network, while keeping the other fixed, which
temporarily is acted as the teacher.

We cast the compatibility modeling as a binary classification
task, and adopt the widely-used cross-entropy loss for both T-OCM
and V-OCM. Accordingly, we have the objective functions,{

L𝑡
𝑐𝑒 = −𝑦𝑙𝑜𝑔(𝑠𝑡 ) − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑠𝑡 ),

L𝑣
𝑐𝑒 = −𝑦𝑙𝑜𝑔(𝑠𝑣) − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑠𝑣),

(10)

where y refers to the ground truth label of the outfit O.L𝑡
𝑐𝑒 andL𝑣

𝑐𝑒

are the objective functions for the T-OCM and V-OCM, respectively.
To encourage the two student networks to learn from each other,

we adopt the Kullback Leibler (KL) divergence loss function to
penalize the distance between the evaluation results of the T-OCM
and V-OCM as follows,

L𝑣−>𝑡 = 𝑠𝑣𝑙𝑜𝑔
𝑠𝑣

𝑠𝑡
+ (1 − 𝑠𝑣)𝑙𝑜𝑔

(1 − 𝑠𝑣)
(1 − 𝑠𝑡 )

,

L𝑡−>𝑣 = 𝑠𝑡 𝑙𝑜𝑔
𝑠𝑡

𝑠𝑣
+ (1 − 𝑠𝑡 )𝑙𝑜𝑔

(1 − 𝑠𝑡 )
(1 − 𝑠𝑣)

.

(11)

Notably, we use L𝑣−>𝑡 for training T-OCM, and L𝑡−>𝑣 for training
V-OCM. Finally, we have{

L𝑡 = L𝑡
𝑐𝑒 + 𝜆L𝑣−>𝑡 + 𝜂L𝑠 + 𝜇L𝑝 ,

L𝑣 = L𝑣
𝑐𝑒 + 𝜆L𝑡−>𝑣 + 𝜂L𝑠 + 𝜇L𝑝 ,

(12)

where 𝜆, 𝜂, and 𝜇 are trade-off hyper-parameters. L𝑡 and L𝑣 are
the final loss functions for the T-OCM and V-OCM, respectively.
In a sense, each compatibility modeling component (i.e., T-COM
or V-OCM) not only learns to correctly predict the true label of
the training instances, but also learns to mimic the output of the
other compatibility modeling component, where the consistent and
complementary regularizations are also jointly satisfied. Notably,
although both L𝑡 and L𝑣 have the consistent and complementary
regularizations, i.e., L𝑠 and L𝑝 , the parameters to be optimized for
them are distinguished, where the regularizations in L𝑡 target at
optimizing the T-OCM, while that in L𝑠 aim to learn parameters
of V-OCM. Algorithm 1 summarizes the alternative optimization
procedure of our MM-OCM. Once our MM-OCM is well-trained,
we will take the average of the predicted compatibility probabilities
of the V-OCM and T-OCM as the final compatibility probability of
the outfit.



Table 1: Performance comparison between our proposedMM-OCMscheme and other baselines over twodatasets. The baselines
were re-trained by their released codes. The best results are in boldface, and the second best are underlined.

Method Polyvore Outfits Polyvore Outfits-D
Compat. AUC FITB Accuracy Compat. AUC FITB Accuracy

Bi-LSTM (Han et al. 2017) [10] 0.68 42.20% 0.65 40.10%
Type-aware (Vasileva et al. 2018) [36] 0.87 56.60% 0.78 47.30%
SCE-NET (Tan et al. 2019) [35] 0.83 52.80% 0.82 52.10%
NGNN (Cui et al. 2019) [3] 0.75 53.02% 0.68 42.49%
Context-aware (Cucurull et al. 2019) [2] 0.81 55.63% 0.77 50.34%
HFGN (Li et al. 2020) [20] 0.84 49.90% 0.70 39.03%
MM-OCM 0.93 63.40% 0.88 58.02%

4 EXPERIMENT
In this section, we conducted experiments over two real-world
datasets by answering the following research questions.

• RQ1: Does MM-OCM outperform state-of-the-art baselines?
• RQ2: How does each module affect MM-OCM?
• RQ3: How is the qualitative performance of MM-OCM?

4.1 Experimental Settings
4.1.1 Datasets. In this work, we chose the Polyvore dataset con-
structed by Vasileva et al. in [36], which contains more unique
items and outfits than other public datasets. Meanwhile, it also pro-
vides textual descriptions of items, which enables our multi-modal
compatibility modeling. According to the dataset split protocal, this
dataset provides the following two versions. 1) Polyvore Outfits: It
consists of 53, 306 outfits for training, 5, 000 outfits for validation,
and 10, 000 outfits for testing. In this dataset, an item may simulta-
neously appear in both the training, validation and testing phases.
2) Polyvore Outfits-D: This dataset contains 16, 995 outfits, 15, 145
outfits, and 15, 145 outfits for training, validation, and testing, re-
spectively. Compared with Polyvore Outfits, Polyvore Outfits-D is
a more challenging version, since there is no item appears in more
than one split.

4.1.2 Evaluation Tasks. Similar to [2, 3, 10, 35, 36], we justified
our proposed MM-OCM scheme with two specific tasks: Outfit
Compatibility Estimation and Fill-in-the-blank (FITB). The former
task is to classify whether a given outfit is compatible, where a
threshold of 0.5 is introduced to derive the class label for each
outfit sample. We adopted the area under a receiver operating
characteristic curve (AUC) as the corresponding evaluation metric.
The latter task is to choose one item from a set of candidates with
one positive item and three negative items, for a given incomplete
outfit. For this task, we applied accuracy as the evaluation metric.
Notably, Polyvore dataset provides the corresponding data split for
these two tasks, which is directly applied in this paper.

4.1.3 Implementation Details. For the image encoder, we selected
the ImageNet [4] pre-trained ResNet18 [11] as the backbone, and
modified the last layer to make the output feature dimension as 256.
Regarding the text encoder, we set the word embedding size to 512,
and the dimension of the hidden layer in LSTM to 256. We alterna-
tively trained the T-OCM and V-OCM by the Adam optimizer [18]
with a fixed learning rate of 0.0001, and the batch size of 16. The

trade-off hyper-parameters in Eqn.(11) are set as 𝜆 = 𝜂 = 𝜇 = 1. In
particular, we launched 10-fold cross validation for each experiment,
and reported the average results. All the experiments are imple-
mented by PyTorch over a server equipped with 4 NVIDIA TITAN
Xp GPUs, and the random seeds are fixed for the reproducibility.

4.2 On Model Comparison (RQ1)
To validate the effectiveness of our proposed scheme, we chose the
following baselines for comparison.

• Bi-LSTM [10] takes the items in an outfit as a sequence
ordered by the item category and fulfils the fashion compati-
bility modeling with Bi-LSTM. For fair comparison, we only
utilized the visual information.

• Type-aware [36] designs type-specific embedding spa-ces
according to the item category. It also utilizes the textual
information by the common-used visual-semantic loss.

• SCE-NET [35] is a pair-wise method, which utilizes multiple
similarity condition masks to embed the item features into
different semantic subspaces. This method also takes into
account the textual information.

• NGNN [3] employs the GNN to tackle the compatibility
modeling task, where the node is updated by a gate mech-
anism. For multimodal features, NGNN designs two graph
channels, and the final compatibility score is derived in a
weighted average manner.

• Context-aware [2] regards fashion compatibility modeling
as an edge prediction problem, where a graph auto-encoder
framework is introduced. Only visual features are employed.

• HFGN [20] shares the same spirits with NGNN, and builds
a category-oriented graph. Additionally, it introduces a R-
view attention map and a R-view score map to compute
the compatibility score. This baseline only uses the visual
features.

Table 1 shows the performance comparison among different
methods on two datasets under two tasks. From this table, we had
the following observations: 1) Among all the baselines, Bi-LSTM
performs the worst, which suggests that modeling the outfit as
an ordered list of items is not reasonable. 2) The methods that
use multimodal features gain more promising results (e.g., Type-
aware on Polyvore Outfits and SCE-NET on Polyvore Outfits-D)
compared with those only utilize the visual ones (i.e., HFGN and
Context-aware) . This implies that taking both visual and textual
modalities into account is rewarding in the outfit compatibility
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Figure 3: Performance of our MM-OCM in two tasks for out-
fits with different numbers of items.

modeling task. And 3) MM-OCM consistently surpasses all baseline
methods on the two datasets under both tasks. This indicates the
advantage of our scheme that utilizes the multimodal correlation
modeling and mutual learning in the context of outfit compatibility
modeling. Notably, we performed the ten-fold t-test between our
proposed scheme and each of the baselines. We observed that all
the p-values are much smaller than 0.05, and we hence concluded
that the MM-OCM is significantly better than the baselines.

To gain deeper insights, we further checked the performance of
our MM-OCM in two tasks for outfits with different numbers of
items. In particular, we only reported the results for the number of
items ranging from 3 to 11, where the others are too small in the
test set to be displayed. As can be seen from Figure 3, our MM-OCM
is not sensitive to the number of items in the outfit, which indicates
that our method has the capacity of handling the compatibility
modeling for outfits with variable items.

4.3 On Ablation Study (RQ2)
To verify the importance of each component in our model, we also
compared MM-OCM with the following derivatives.

• w/o Correlation: To explore the effect of the multimodal
correlation modeling, we removed this component by setting
ô𝑖 = t̂𝑖 and õ𝑖 = ṽ𝑖 in Eqn.(6).

• w/o Mutual: To study the effect of the mutual learning
component, we removed the knowledge distillation between
the T-OCM and V-OCM by setting 𝜆 = 0.

Table 2: Ablation study of our proposed MM-OCM scheme
on two datasets. The best results are in boldface.

Method Polyvore Outfits Polyvore Outfits-D
Compat.
AUC

FITB
Accuracy

Compat.
AUC

FITB
Accuracy

w/o Correlation 0.91 52.91% 0.87 54.47%
w/o Mutual 0.92 60.80% 0.86 55.62%
Image_Only 0.90 57.80% 0.85 52.85%
Text_Only 0.79 42.28% 0.74 35.45%
Concat_Directly 0.91 58.67% 0.79 49.73%
Concat_Ensemble 0.91 59.31% 0.80 52.04%
MM-OCM 0.93 63.40% 0.88 58.02%

• Image_Only and Text_Only: The two derivatives are set
to verify the importance of visual and textual information.
Specifically, for the Image_Only, we removed T-OCM by set-
ting õ𝑖 = ṽ𝑖 , while for the Text_Only, V-OCM was removed
by seting ô𝑖 = t̂𝑖 .

• Concat_Directly: To gain more insights into our manners
of utilizing visual and textual information, we directly con-
catenated the visual and textual features of each item and
fed them to a MLP to get ô𝑖 . Accordingly, the correlation
modeling and mutual learning are simultaneously removed.

• Concat_Ensemble: To further investigate whether the im-
provement of MM-OCM is achieved by the ensemble of
more models, we also derived Concat_Ensemble from Con-
cat_Directly by introducing two LSTM and two CNN en-
coders.

Table 2 shows the ablation results of our MM-OCM. From this
table, we gained the following observations. 1) w/o Correlation per-
forms worse than our MM-OCM, which proves the effectiveness of
the proposed multimodal consistency and complementarity model-
ing. 2) MM-OCM surpasses w/o Mutual, indicating that the mutual
learning component is indeed helpful for integrating the T-OCM
and V-OCM by transferring knowledge between the twomodules. 3)
Both Image_Only and Text_Only are inferior to MM-OCM, which
suggests that it is essential to consider both visual and textual in-
formation to gain better outfit compatibility modeling effects. In
addition, Image_Only outperforms Text_Only remarkably, which
reflects that the image contains more useful information than the
text, which is in consensus with the saying that “A picture is worth
a thousand words”. 4) Compared to our MM-OCM, Concat_Directly
also delivers worse performance, implying that simply fusing visual
and textual features is insufficient to explore the intrinsic corre-
lation of the two modalities. This further verifies the superiority
of our strategy that models the multimodal correlation and de-
vises two schemes of multimodal fusion. Furthermore, it can be
observed that on the more challenging dataset Polyvore Outfits-D,
the results of Concat_Directly are better than that of Text_Only,
but worse than that of Image_Only. This phenomenon indicates
that an inappropriate multimodal fusion method will be less ef-
fective than only utilizing the more informative modality. And 5)
Concat_Ensemble has limited improvement over Concat_Directly,
and performs worse than our MM-OCM, which demonstrates that
the superiority of our model is not mainly induced by the ensemble
of more models.
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Figure 4: Qualitative results of MM-OCM on (a) outfit compatibility estimation, and (b) fill-in-the-blank.

4.4 On Case Study (RQ3)
To gain a thorough understanding of our model, we also conducted
qualitative evaluation of our method.

Figure 4 intuitively shows several testing examples on the outfit
compatibility estimation and fill-in-the-blank tasks. From Figure 4
(a), we observed that, for the example in the first row, which con-
tains items with the consistent black color and elegant style, our
MM-OCM is able to assign it with a high compatible probability. For
the example in the middle row, the four items share the compatible
tone and material, and thus obtain the high compatibility score.
As for the outfit in the last row with obvious incompatible colors,
e.g., green does not go well with red, our MM-OCM gives a low
compatibility score. From Figure 4 (b), we can see that our method
has the ability to choose the most suitable item from the candidate
set to form a compatible outfit. For the example in the first row, the
outfit lacks a pair of shoes and our MM-OCM correctly selects the
first item by attributing a high compatibility score. As can be seen,
the selected item matches well with other items in the query. As
to the example in the second row, although our method chooses
the correct answer (item D), it also gives a high compatibility score
to the item 𝐵, since these two items are both dark jackets of the
same style. This reconfirms the compatibility modeling capabilities
of our model.

5 CONCLUSION AND FUTUREWORK
In this work, we solve the outfit compatibility modeling problem
by exploring the multimodal correlations. In particular, we clearly
separate and explicitly model the consistent and complimentary
relations between the visual and textual modalities. This is accom-
plished by nonlinearly projecting the consistent and complemen-
tary contents into the separable spaces, whereby they are respec-
tively formulated by parallel and orthogonal regularizers. We then
apply the complementary information to strengthen the vision-
and text-oriented representations. Based upon these two kinds of
representations, two compatibility modeling brunches are derived
and reinforced by mutual learning via knowledge transferring. Ex-
tensive experiments over two benchmark datasets have verified
the effectiveness of our proposed MM-OCM scheme, as compared
with several state-of-the-art baselines. In future, we plan to apply
our multimodal correlation modeling methods to enhance other
research problems, such as multiple social network analysis.
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