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With the recent prevalence of online fashion-oriented communities and advances in multimedia process-
ing, increasing research interests have been paid to the fashion compatibility modeling, where the com-
patibility between complementary fashion items (e.g., a top and a bottom) can be assessed automatically.
Existing fashion compatibility modeling techniques mainly focus on measuring the compatible prefer-
ence between fashion items with Deep Neural Networks (DNN), but overlook the generative compatibil-
ity modeling. Differently, in this paper, we explore the potential of the Generative Adversarial Network
(GAN) in fashion compatibility modeling and thus propose a Multi-modal Generative Compatibility
Modeling (MGCM) scheme. In particular, we introduce a multi-modal enhanced compatible template
generation network, regularized by the pixel-wise consistency and template compatibility, to sketch a
compatible template as the auxiliary link between fashion items. Accordingly, MGCM is able to measure
the compatibility between complementary fashion items comprehensively from both item-item and
item-template perspectives. Experimental results on two real-world datasets demonstrate the superior-
ity of the proposed scheme over state-of-the-art methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

According to ShopifyPlus, 67% and 68% of fashion products
were purchased online in UK and China in 2019, respectively'.
With people’s tremendous purchase for fashion products in
e-commerce, there have been increasing research interests on the
automatically fashion analysis techniques, especially the compatibil-
ity modeling among complementary fashion items, as it can facili-
tate many downstream applications, such as the complementary
clothing matching [1,2] and the compatibility assessment [3,4].
Essentially, the fashion compatibility modeling works on automati-
cally assessing the compatibility of a given set of complementary
fashion items with different categories (e.g., the top, bottom and
shoes), helping people avoid the trouble of consulting the profes-
sional stylist at great expense.

In a sense, existing fashion compatibility modeling methods
mainly focus on learning the latent space with advanced Deep
Neural Networks (DNN), where the compatible preference among
fashion items can be measured based on their multi-modal
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representations (i.e., the visual encoding and the textual encoding)
[5,6]. Nevertheless, most of them neglected the potential of
Generative Adversarial Network (GAN) in fashion compatibility
modeling, which has shown remarkable performance in various
image translation tasks, such as edges to photos [7], and labels to
facade [8]. In fact, GAN can help generating a compatible template
(e.g., a bottom template) for a given item (e.g., a top) to enhance
the compatibility modeling between fashion items from not only
the conventional item-item perspective but also the auxiliary
item-template angle. Motivated by this, in this work, to promote
the fashion compatibility modeling, we study the generative
compatibility modeling, where an auxiliary template generation
network is introduced.

Without losing the generality, we focus on the general
compatibility modeling between items of the two most essential
fashion categories: the top and bottom. Nevertheless, the task is
non-trivial due to the following challenges. 1) As the auxiliary
template plays an important role in the compatibility modeling,
especially from the item-template perspective, how to generate
the realistic and compatible template for the given item to guide
the compatibility modeling constitutes the first challenge. 2)
How to seamlessly integrate the template generation to the
fashion compatibility modeling to comprehensively measure the
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compatibility and thus boost the model performance is a crucial
challenge. And 3) in addition to the visual images, the textual
descriptions also convey important semantic features (e.g., the
material and style) of fashion items. Accordingly, how to effectively
fuse the multi-modal (i.e., the visual image and the textual descrip-
tion) information for both auxiliary template generation and com-
patibility modeling poses the last challenge.

To address these challenges, we propose a Multi-modal Gener-
ative Compatibility Modeling (MGCM) scheme as shown in Fig. 1.
Our proposed scheme works on enhancing the compatibility mod-
eling between complementary fashion items with the auxiliary
template generation. In particular, we introduce a complementary
template generation network coupled with the pixel-wise consis-
tency and template compatibility regularization to transfer the
given fashion item to its compatible template. Based on the gener-
ated auxiliary template, MGCM is enabled to measure the fashion
compatibility from both item-item and item-template views. To
promote the performance, multiple modalities of fashion items
are subtly fused in both template generation and compatibility
modeling.

Our main contributions can be summarized in the following
three-folds.

1) We propose a Multi-modal Generative Compatibility Model-
ing (MGCM) scheme, which is able to boost the performance of
compatibility modeling with the auxiliary template generation.
2) We design a multi-modal enhanced compatible template
generation network, regularized by the pixel-wise consistency
and template compatibility regularization, to sketch a compat-
ible template as the auxiliary link between fashion items.

3) Extensive experiments on two real-world datasets show that
the generated templates are indeed helpful in guiding the com-
patibility modeling between complementary fashion items.

2. Related work
2.1. Generative models

In recent years, generative models, such as the Variational
Autoencoder (VAE) [9] and GAN [10] have emerged for various
image generation tasks. In a sense, variational methods optimize
the lower bound of the logarithmic likelihood with probabilistic
graphical models by introducing the deterministic bias [11].
Although VAE has shown its great power in various image genera-
tion tasks [12,13], it tends to generate blurry samples due to the
minimization of the KL divergence between samples and the model
[14]. Differently, a typical GAN [15], comprising a generator and a
discriminator, works in the min-max optimization strategy. The
generator tries to generate realistic samples with random noise,

| /I Visual feature of the top/bottom
: / Textual feature of the top/bottom
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while the discriminator strives to distinguish it from the training
data. Then, inspired by GAN, Conditional Generative Adversarial
Network (CGAN) [16] was proposed to tackle the image-to-image
translation problem, where the image mapping between different
domains is learned. Currently, CGAN has received considerable
attention from the computer vision research community, such as
image synthesis [17], video generation [18] and person re-
identification [19]. However, limited efforts have been dedicated
to explore its great potential in the field of compatibility modeling,
which is the major concern of our work.

2.2. Fashion compatibility modeling

Due to its huge economic value, fashion compatibility modeling
has attracted tremendous research attention. For example, Han
et al. [1] proposed a Bidirectional Long Short-Term Memory (Bi-
LSTM) scheme that is able to sequentially predict the next fashion
item conditioned on the existing ones. In order to utilize the rich
fashion domain knowledge on clothing matching, Song et al. [5]
introduced a knowledge-guided compatibility model for clothing
matching. In addition, Vasileva et al. [6] introduced an end-to-
end network to learn an embedding subspace, where the pair-
wise similarity and compatibility can be jointly measured.
Although these studies have achieved compelling success in com-
patibility modeling, they neglect the generative model, which can
generate a compatible template as an auxiliary bridge between
complementary fashion items and thus enhance the model perfor-
mance. In fact, Liu et al. [20] introduced an Attribute-GAN frame-
work to design a compatible bottom for the given top and
bottom attributes, and thus make a proper collocation. Different
from this work, Lin et al. [21] devised a variational co-
supervision outfit recommendation framework in the context of
recommending bottoms for a given top,where a bottom would be
generated by VAE with the given top image and the desired
bottom textural descriptions. Beyond that, to be more flexible in
the practical application, we take a step forward and propose the
multi-modal generative compatibility modeling framework for
the clothing matching, where we devise the auxiliary complemen-
tary template generation with GAN simply based on the given top
without the desired bottom description, which may be unavailable
in practice.

3. Methodology

In this section, we detail our proposed MGCM, which is able to
boost the performance of the compatibility modeling between
complementary fashion items (e.g., a top and a bottom) with the
auxiliary complementary template generation. We first formally
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Fig. 1. Illustration of the proposed multi-modal generative compatibility modeling network.
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give the problem formulation and then introduce the multi-modal
enhanced compatible template generation network, and finally based
on that present the multi-modal generative compatibility modeling.

3.1. Problem formulation

Suppose we have two fashion item domains: the top 7~ and bot-
tom B, and a set of positive top-bottom pairs P = {(t;,b;,),
(ty,by), ..., (ti,,bj,)}, where t, €T,b,eB m=1,... M. M
refers to the total number of positive pairs. Each top t; (bottom
b;) is associated with a visual image I, (I5;) and textural description
¢ (cy). In this work, we focus on devising an end-to-end multi-
modal generative compatibility modeling scheme C that is able
to enhance the compatibility modeling between the top t; and bot-
tom b;, by introducing the auxiliary template generation network G
as follows:

G(I;,¢,|®6) — Iy;
my = C(Ig;, €, Ly, €, 1, |Oc),

(1)
where m; denote the compatibility between the top ¢; and bottom
bj. ®; and O¢ are the sets of to-be-learned parameters of our
scheme.

3.2. Multi-modal enhanced compatible template generation

3.2.1. Complementary template generation

As the compatible template generation is essentially an image-
to-image (i.e., top-to-bottom) translation task, we can naturally
adopt CGAN as the backbone of our compatible template genera-
tion network, which has made remarkable achievements in various
image-to-image translation problems [16], such as the attributes-
to-images [22], image synthesis [23], and face photos-to-emoji
[24]. In our context, the generator G;_5 of CGAN aims to translate
the given top I, of the source domain 7~ to a compatible bottom

template ib,. of the target domain B as follows:

G’T~B(lt,-|®6) - ibﬁ (2)

where @ refers to the set of parameters in the generator G;_ .
In fact, the traditional real-fake discriminator of the standard
GAN can only enforce the generator to produce realistic bottom
images, which could be incompatible to the given top. In our con-
text, as we expect the generator to synthesize compatible bottom
templates as the guidance for compatibility modeling, we intro-
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duce the discriminator D working on distinguishing the real com-
patible bottom I, from the generated bottom template ib,, when a
top I, is given as a condition. Therefore, inspired by the CGAN [16],
we define the min-max objective function of template generation
and discrimination:

mGianaX[:CGAN(GTHBvDB) = Ey,, Iy, log D5 (I, 1 )]

+ Ei, [log(1 — Dy (I, I,))]. 3)

3.2.2. Multi-modal enhanced compatible template generation

Obviously, the above CGAN-based compatible template genera-
tion only takes into account the visual image of the given top, but
ignores the great value of the textural description in the compati-
ble template generation that also conveys important cues (e.g., the
material and style) regarding the given fashion item. Toward this
end, we take one step forward and propose the multi-modal
enhanced compatible template generation. Inspired by [7], we re-
devise a generator Gr,.s with three components: down-
sampling, multi-modal fusion and up-sampling, as shown in Fig. 2.

Specifically, given a top t;, the down-sampling first learns its
visual encoding based on its visual image I, with several convolu-
tion layers as follows:

Hk = ¢(W/(Hk—‘l + bk)s k= 07 17 cee 7I<7 (4)

where Oy = {W;,by| k=0,1,...,K} refers to the parameters for
the down-sampling and ¢(.) stands for the Leaky ReLU (LReLU)
[25] activation function. In our task, we set K =6,Hy =1, as the
input, and Hy € R"* ' ¢ as the output, where w= hx c represents
the corresponding shape.

To facilitate the multi-modal fusion toward the template gener-
ation, we reshape the Hy to a vector v, € RY, whered=w x h x c.
Regarding the textual modality, we first embed each word with a
300-D vector by applying the pre-trained word2vector [26]. Then,
we adopt the TextCNN [27], which has achieved astonishing suc-
cess in various tasks, like the multi-modal recommendation [28]
and Natural Language Processing (NLP) [29]. In particular, we
employ 100 kernels for each size of {2,3,4,5}. Accordingly, we
map the textual description of the top t; to the textual encoding
€, (Cy) € R4,

To fulfill the multi-modal fusion, we first concatenated the
visual encoding v, and textual encoding ¢,. Then, we further
employ the fully-connected layer to map the fusion encoding as
follows:
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Fig. 2. Illustration of our generator architecture, which is able to generate the complementary bottom template for a given top with multi-modalities.
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P = 0(Wp[Vy; €] + by), ()

where ®, = {W,,b,} stands for the parameters of the multi-modal
fusion network and ¢(.) represents the sigmoid activation function.
By reshaping the projected feature p,. € R, we obtain the final
encoding of the top t;, P, € R** ' ¢, for the following up-sampling
toward bottom template generation. The up-sampling component
is devised to translate the multi-modal feature P,. to the bottom
template ibi through multiple deconvolution layers with the param-
eter ®,;. Ultimately, the generator G, 5 transforms the given top
with multi-modalities in the source domain 7 to a bottom template
ib]. in the target domain B with parameters @¢ = {@y;, ©p, Oy}

Simply applying the cross entropy function mentioned above
may encounter the vanishing gradients problem in the process of
updating the generator [30]. Therefore, to guarantee the training
stability and image generation quality [31], we adopt the least
square loss rather than the min-max objective function in the
Eqn.(3). Then, we have the objective function for our multi-
modal enhanced compatible template generation network as
follows:

min£(Dg) = 3By, By (Dl Ty) — 1)3]
B

+1E1,[(Ds(ly, T,) — 0)°], (6)

min £(Gr..5) =} &, [(Da(k.Tp) ~ 1))

As we expect the generated template would guides the compat-
ibility modeling, we argue that the generated bottom template ibi
should be compatible with the given top I.,. Therefore, we intro-
duce the pixel-wise consistency to regularize the low-level differ-
ence between the generated bottom ibi and the positive one lbj,
which can be defined with the L; distance as follows:

Lpixel = Hib,» =1, (7)

T

3.3. Multi-modal generative compatibility modeling

Based on the above multi-modal enhanced compatible template
generation, we can proceed to the compatibility modeling between
fashion items, where we take into account the generated bottom

template I, and thus model the compatibility between the fashion

items from both the item-item and item-template perspectives.
Fig. 3 illustrates the workflow of our proposed MGCM scheme.

| m{;" (m{,;T)l—>{ m;; (M) |<—| mi;’ (m{,;’)l
i t

Item-template
Compatibility Modeling

Item-item
Compatibility Modeling
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Fig. 3. Workflow of our proposed multi-modal generative compatibility modeling.

3.3.1. Item-item compatibility

To measure the item-item compatibility, we aim to seek the
latent representations of fashion items that well support the com-
patible preference modeling between fashion items. In particular,
we first define the output of the (K — 1)th layer of the down-
sampling as the visual representation V,, € R™ ™ ! of top t;, where
mx* nx | represents the shape of the representation. In a similar
manner, we can get the visual representation V,, € R™ ™ " of the
bottom b;. In addition, We adopt the output of the first deconvolu-
tion layer of the up-sampling as the visual representation
\7bi e R™ ™! of the generated bottom template ib,.. Moreover, to
well exploit the latent feature v, € R”” of top t;, we first adopt

the global average pooling (GAP) to convert V,, to v,, € R' and fur-
ther project it as follows:

v, = 6(W,v, +h,), (8)

where W, € R"»*¢ and h,, € R”” refer to the corresponding parame-
ters. In the similar manner, we can get the latent representation vy,
of the bottom b;. For the textual features, we can obtain ¢, (Cy,) € R
with Eq. (8). Therefore, the item-item compatibility can be calcu-
lated as follows:
I o \Ts c\Ta

my~ = a(Ve,) Vi, + (1 — 0)(€) €y, 9)
where o is the trade-off parameter to balance the importance of the
compatibility measurement with different modalities.

3.3.2. Item-template compatibility

Different from existing fashion compatibility modeling tech-
niques mainly focus on measuring the compatible preference
between fashion items with deep neural networks, we further take
the generative compatibility modeling into consideration. We
argue that the compatible bottoms for the given top should share
similar high-level attributes with the generated bottom template.
Accordingly, we design the template compatibility regularization
to measure the high-level similarity between the bottom b; and
the generated bottom template from the auxiliary item-template
perspective:

I-T \/
mij = HV,,I _Vbj

10
. (10)
where m{JTT refers to the item-template compatibility. Vb,- and V,,
represent the high-level visual representation of the generated bot-
tom template and the positive bottom, respectively.

3.3.3. Compatibility modeling

Combining the item-item compatibility and item-template
compatibility, the multi-modal template-enhanced compatibility
score m; between the top t; and bottom b; can be defined as
follows:

my =mi”" + pmiT, (11)

where 8 is a hyper-parameter controlling the importance of each
compatibility.

In a sense, we can easily derive the positive top-bottom pairs
from those have been composed together by fashion experts. How-
ever, regarding the non-composed fashion item pairs, we cannot
draw the conclusion that they are incompatible as they can be
the missing potential positive pairs that can be composed in the
future. Toward this end, similar to [32], to accurately model the
implicit relationship between fashion items, we adopt the BPR
[33] framework by introducing the following training dataset of
triplets:

€ :={(.j,k)I(t;, by) € P,br € B\ by}, (12)
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where the triplet (i, j, k) indicates that the top-bottom pair (t;, b;) in
the positive top-bottom set P is more compatible than the pair
(ti, br). Notably, the bottom b, is randomly sampled from the whole
set of bottoms B. Then, we define the following objective function:

Lppr = —In(a(my — my)), (13)

where m;y, represents the compatibility between the top t; and bot-
tom by corresponding to that defined by the Eq. (11) in our paper. In
a sense, we aim to push the given top closer to the positive bottom,
but far away from the negative bottom.

3.4. Optimization

Overall, the objective function of our proposed multi-modal
generative compatible preference modeling can be defined in an
end-to-end manner. Thus we have:

L = Ly + UL(Grp5) + VL(Ds) + PLpixer + 9/|Oc|>. (14)

where O¢ = {Og, Op, Opp} refers to the parameters of our proposed
network. 7,4, 4, and v are the hyper-parameters controlling the
strength of different components of the proposed MGCM.

Algorithm 1: Multi-modal Generative Compatibility
Modeling (MGCM) training procedure.

Input: A set of paired top-bottom fashion items P with top
in domain 7 and bottom in domain 5, generator with
parameters @, discriminator with parameters ®p, BPR
with parameters @gpg, learning rate 7, hyper-parameters 7,
o, U, v.

Output: Parameters @¢ = {O¢, Op, Oppr}.

: Initialize parameters ©¢, ®p, Oppg.

: repeat

3: Randomly draw the set (i,j, k) from P according to the

Eqn. (12).

Construct the MGCM according to Eqn. (14).
for each parameter 0 in @¢ do

Update 0p «— Op + NV, (VL(Dg) + Vﬁpixel + d0p).
Update 0¢ < 0¢ + V. (LWL(GT,.—5) + 00¢).
Update Oppg < Oppr + 1V oppe (£ BPR + 00BPR)-

9: end for

10: until Converge

11: Return Oc.

N —

NI R

We adopt the Adam [34] and Stochastic Gradient Descent (SGD)
[35] optimizer to train the generator and discriminator, respec-
tively. The optimization procedure is shown in Algorithm 1.

4. Experiments

We evaluate our proposed MGCM on the following research
questions:

e RQ1. How does the proposed MGCM perform as compared to
state-of-the-art methods?

¢ RQ2. How do different modalities contribute to the model
performance?

e RQ3. What is the effect of each component in our framework?

4.1. Dataset and experimental settings
4.1.1. DataSet

To well demonstrate the effectiveness of our proposed MGCM,
we experiment on two public real-world datasets: FashionVC

[32] and ExpFashion [36], where each item is associated with both
a visual image and the textual description. FashionVC consists of
20,726 outfits with 14,870 tops and 13,662 bottoms, while
ExpFashion is comprised of 853,991 outfits with 168,682 tops
and 117,668 bottoms. Both datasets are crawled from the fashion
sharing website (i.e., Polyvore). Notably, for a comparable evalua-
tion, we randomly select 20,000 outfits from ExpFashion instead
of using the whole dataset.

4.1.2. Evaluation metric

We adopt the area under the ROC curve (AUC) [37] and the
mean reciprocal rank (MRR) [38] as the evaluation metrics to tune
hyper-parameters and evaluate the performance. On one hand, we
define the AUC metric as follows:

1 1
AUC:— — T 5 ml"7m' 9 15
lp‘wgﬂg(w)l;( ij» M) s)

where £(i,j) indicates that the top and positive bottom pairs pre-
sent in P. d(my, my) = 1 when the compatibility between the posi-
tive top-bottom pair surpasses the negative one (i.e., my > my), and
d(my;, my) = 0 otherwise. On the other hand, we express the MRR
metric as follows:

MRR 11 16

where R, refers to the ranking position of the positive bottom for
the nth top.

4.1.3. Implementation details

For each dataset, we randomly scramble the outfits (i.e., top-
bottom pairs) and leverage the first 80% as the training set, the fol-
lowing 10% as the validation set, and the last 10% as the testing
set. For each top-bottom pair in these three subsets, we randomly
choose 3 and 9 negative bottoms according to Eq. (12) for the tasks
of compatibility modeling and the complementary fashion item
retrieval, respectively. To adjust the hyper-parameters, we adopt
the gird search strategy with the validation set and obtain the opti-
mal performance on the test set. As shown in Fig. 4, the optimal
experimental results are achieved with the y = 10,000 (10, 000),
the dimension of the final representation D, = 128 (D; = 256),
B =0.1(0.1), u =0.1(0.1) and v = 0.01 (0.01) for AUC (MRR). Fol-
lowing with [7], we set 1 as 0.0002.

We first verified the cost and accuracy convergence of our pro-
posed model, which is also illustrated in many deep learning meth-
ods [39,40]. We show the cures of the training loss in Eq. (14)
(black solid line) and the training AUC in Eq. (15) (blue dashed line)
in Fig. 5. We can see that the two values first change sharply within
a few iterations and then tend to be stable, which well validates
the convergence of our model.

4.2. Comparison on different models (RQ1)

Our MGCM is compared with following state-of-the-art
baselines:

e POP: The compatibility between the top t; and bottom b; is
measured by the number of bottoms that have been matched
with the top in the positive top-bottom set P.

e Bi-LSTM [1]: Bi-LSTM is designed to sequentially recommend
the complementary fashion items for existing items of an outfit.
In our context, we adapt this method to deal with the outfit that
simply consists of two fashion items (i.e., a top and a bottom).

e IBR [41]: This approach models the relationships between fash-
ion items in a latent style space only with the visual
information.
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Fig. 4. Illustration of the AUC and MRR values of MGCM with varying hyper-parameters.
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Fig. 5. Illustration of the training cost and accuracy convergence of our proposed
MGCM.

o IBR-VC: We extend IBR to enable it to measure the compatibil-
ity between fashion items with both the visual and textual
information. Specifically, we derive IBR-VC from IBR by adding
TextCNN, which is the textual feature encoding method used
in our MGCM framework.

BPR-DAE [32]: BPR-DAE is a content-based clothing matching
scheme, which jointly models the compatible preferences of
fashion items with multi-modalities and the coherent relation
among different modalities of the same item. To make a fair
comparison, we adapt this method to encode the visual and tex-
tual representations with Alexnet and TextCNN in an end-to-
end manner.

FARM [21]: This baseline aims to fulfil the outfit recommenda-
tion with a generated fashion item, where the VAE is adopted to
generate a bottom image given a top and desired bottom
description. In our context, we remove the input of the bottom
text description to accommodate more flexible applications.
CycleGAN-CM [42]: We replace the generative adversarial net-
work in MGCM with the CycleGAN, which is devised to address
the unsupervised image-to-image translation problem with
unpaired training data based on the forward and backward
cycle-consistency networks.

o Pix2pix-CM [7]: We substitute the template generation net-
work with Pix2pix, whose generator is constructed with the
U-Net [43] and discriminator is devised to distinguish the gen-
erated bottom template and the real one for the given top.

Table 1 shows the performance comparison among state-of-
the-art baselines in terms of AUC and MRR on FashionVC and
ExpFashion, respectively. From this table, we have the following
observations. 1) Our approach significantly outperforms all baseli-
nes, which verifies the effectiveness of our proposed MGCM. 2) POP
achieves the worst performance, which may be due to the fact that
this method overlooks the valuable item content, such as the visual
and textural features of fashion items. 3) Compared with other
non-generative compatibility modeling methods, Bi-LSTM per-
forms worse. One possible reason is that the sequential recommen-
dation method maybe not suitable for the compatibility modeling
with only two items. 4) MGCM outperforms IBR, IBR-VC and BPR-
DAE, indicating that it is advisable to incorporate the template gen-
eration to facilitate the compatibility modeling from the item-
template perspective apart from the conventional item-item per-
spective. 5) Unexpectedly, FARM performs worse even than the
non-generative methods, implying that FARM is highly depend
on the desired bottom description and cannot well fulfil the com-
patibility modeling in our context, where the bottom description is

Table 1
Performance comparison of different models in terms of AUC and MRR on FashionVC
and ExpFashion.

FashionVC ExpFashion

Approach AUC MRR AUC MRR

POP 0.4364 0.1989 0.3823 0.2130
Bi-LSTM 0.5464 0.3299 0.5298 0.3261
IBR 0.6189 0.4391 0.6029 03715
IBR-VC 0.6807 0.4548 0.6591 0.4159
BPR-DAE 0.7826 0.6214 0.7454 0.5893
FARM 0.5842 0.3710 0.5540 0.3250
CycleGAN-CM 0.8292 0.6884 0.8243 0.6872
Pix2pix-CM 0.8341 0.6932 0.8265 0.6895
MGCM 0.8724 0.7293 0.8592 0.7169
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unnecessary. 6) Our MGCM surpasses CycleGAN-CM, which may
be attributed to the fact that MGCM takes into account both
modalities, while CycleGAN-CM neglects the importance of textual
modality for the template generation. And 7) MGCM achieves bet-
ter performance than Pix2pix-CM, where the U-Net structure is
considered. One possible explanation is that the U-Net structure
is easier to learn the low-level information, which affects the
experimental results.

4.3. Comparison of different modalities (RQ2)

To demonstrate the advantages of incorporating the multi-
modalities in the compatibility modeling, we introduce two
derivatives of our MGCM: MGCM-V and MGCM-T, where only
the visual and textual modality is incorporated by MGCM, respec-
tively. Table 2 provides the evaluation results of different modali-
ties in terms of AUC and MRR on the two datasets. From this table,
we can make the following observations. 1) Our MGCM can boost
the performance with the multi-modal information. Specifically,
our method outperforms the MGCM-V by 6.91% and 5.34% in
terms of AUC and MRR, respectively. This demonstrates that the
visual and textural modalities complement each other toward
the compatibility modeling. And 2) MGCM-V is superior to
MGCM-T, suggesting that the visual modality captures more intu-
itive features (e.g., color, pattern and clipping) of fashion items
than the textural modality, and hence contributes more in the
fashion compatibility modeling.

To further study the effect of different modalities in the item-
item compatibility modeling, Fig. 6 shows the performance of
our model with respect to the parameter « in Eq. (9) on both the
AUC and MRR metrics. As can be seen, MGCM achieves the optimal
performance at « = 0.5 on AUC and « = 0.6 on MRR, which implies
that both modalities are comparably important for the item-item
compatibility modeling. To some extent, this also reflects that
the superior performance of MGCM-V over MGCM-T, which can
be attributed to that the visual modality contributes more in the
auxiliary template generation component of MGCM as compared
with the textural modality.

Table 2
Performance comparison of different modalities in terms of AUC and MRR on
FashionVC and ExpFashion.

FashionVC ExpFashion
Approach AUC MRR AUC MRR
MGCM-V 0.8160 0.6759 0.8126 0.6652
MGCM-T 0.6578 0.5933 0.6179 0.4379
MGCM 0.8724 0.7293 0.8592 0.7169
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Fig. 6. The performance of our model with respect to the parameter « in terms of
AUC and MRR.

In addition to the quantitative evaluation, we further visualize
the generated bottom templates of different generative models
(i.e., FARM, Pix2pix-CM, CycleGAN-CM, and MGCM). As shown in
Fig. 7, we find that our MGCM can generate more realistic and
compatible bottom templates compared with other generative
baselines, especially regarding sketching the color and shape attri-
butes of the templates. Interestingly, although our MGCM also fails
to capture the item texture well, it can still improve the perfor-
mance of compatibility modeling significantly. This suggests that
the color and shape are the key factors affecting the compatibility
assessment and reconfirms the necessity of the template
generation.

Meanwhile, to gain more deep insights of our model, we list
several unsuccessful template generation cases in Fig. 8. As can
be seen, for the group (a), the generated bottom templates are
incorrect or blurry in terms of the item shape, which may be due
to the unusually angle of the ground truth image that makes it dif-
ficult for our MGCM to generate the bottom template. Pertaining to
the group (b), although our MGCM can sketch the item shape prop-
erly, it fails to render the complex pattern details for the template.
As for the group (c), the ground truth bottoms are folded, which
hinders the template generation of our MGCM.

4.4. Comparison of different components (RQ3)

To get a thorough understanding of our model, we study the
effects of different components in terms of AUC and MRR. We
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Fig. 7. Bottom templates generated by different generative models. GT: ground
truth.
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Fig. 8. Failure samples in our dataset.
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Table 3
Performance comparison of our MGCM with different component configurations in
terms of AUC and MRR on FashionVC and ExpFashion.

FashionVC ExpFashion
Approach AUC MRR AUC MRR
-noPixel 0.8173 0.6681 0.7920 0.6481
-noTemG 0.7615 0.6546 0.7411 0.6305
MGCM 0.8724 0.7293 0.8592 0.7169

adapt our method to -nopixel and -noTemG by setting the hyper-
parameters ) to 0 and disabling the multi-modal bottom template
generation network, respectively. Table 3 shows the results of our
MGCM with different component configurations in terms of AUC
and MRR. An interesting observation is that MGCM outperforms -
nopixel and -noTemG, indicating both the proposed pixel-wise

J. Liu et al./ Neurocomputing 414 (2020) 215-224

consistency regularization and the multi-modal enhanced compat-
ible template generation network can boost the performance. In
addition, -nopixel performs better than -noTemG, indicating that
the multi-modal enhanced template generation plays a more
important role in our framework than the pixel-wise consistency
regulation.

Fig. 9 visualizes the performance of different models in the
tasks of generative compatibility modeling and complementary
clothing retrieval, respectively. As shown in Fig. 9(a), the compat-
ible preference of all triplets are correctly identified by MGCM but
not -nopixel. In fact, we noticed that for each triplet, the given top
seems to be compatible with both the positive and negative bot-
toms, which may lead the incorrect modeling results of -nopixel.
Therefore, incorporating the pixel-wise consistency regularization
between the generated template and the bottom candidate,

T-shirt

myj = 3.02
ligje = —2.59

Loose Blouse  Mini Skirt Pants
Compatibility Score t; j by, Template

Denim Short  Silk Short

aas

White Gnd Top Mini Skirt Jegging Pants

Mohair Sweaters Jeans  Skinny Jeans

mijk = 8.76 m—
ey T
figje = —0.50  mmm—
= -
Wool Sweater Pants Skirt
Compatibility Score t; bj by, Template

(a) Compatibility modeling results of -nopix and MGCM, where the corresponding
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(b) Complementary clothing retrieval results of -noTemG and MGCM, where the fashion

items highlighted in the red boxes are the ground truth.

Fig. 9. Performance illustration of different models in the tasks of generative compatibility modeling and complementary clothing retrieval, respectively.
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namely, taking the generated template as a reference, MGCM is
able to distinguish the positive bottom b; for the given top t; from
the negative one and provides the correct my. In addition, as we
can see from Fig. 9(b), -noTemG fails to rank the positive bottoms
at the first place, which is corrected by the complete MGCM that
takes into account the bottom template generation. Notably, the
generated templates do provide the reasonable guidance for rank-
ing the positive bottoms. Ultimately, these observations indeed
validate that both the proposed pixel-wise consistency regulariza-
tion and the auxiliary multi-modal bottom template generation in
our MGCM are helpful to improve the model preference in differ-
ent tasks.

5. Conclusion

In this paper, we propose a multi-modal generative compatibil-
ity modeling (MGCM) network, which is able to boost the perfor-
mance of compatibility modeling between fashion items (e.g., a
top and a bottom) with the auxiliary template generation. Specifi-
cally, we introduce the multi-modal enhanced compatible tem-
plate generation network to sketch a compatible template (e.g., a
bottom template) for the give fashion item (e.g., a top) with the
pix-wise consistency and template compatibility regularization.
Our proposed MGCM is able to model the compatibility preference
from both the item-item and item-template perspectives. Exten-
sive experiments on two public real-world datasets show that (1)
the generated templates are indeed helpful in guiding the compat-
ibility modeling between complementary fashion items; and (2)
the pixel-wise consistency regularization does promote the com-
patibility modeling performance. Currently, our model only mea-
sures the compatibility between two fashion items. In the future,
we plan to devise more advanced scheme to model the compatibil-
ity among multiple fashion items.
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