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ABSTRACT
Recently, due to the unprecedented growth of multimedia data,
cross-modal hashing has gained increasing attention for the
efficient cross-media retrieval. Typically, existing methods on cross-
modal hashing treat labels of one instance independently but
overlook the correlations among labels. Indeed, in many real-world
scenarios, like the online fashion domain, instances (items) are
labeled with a set of categories correlated by certain hierarchy. In
this paper, we propose a new end-to-end solution for supervised
cross-modal hashing, named HiCHNet, which explicitly exploits the
hierarchical labels of instances. In particular, by the pre-established
label hierarchy, we comprehensively characterize each modality
of the instance with a set of layer-wise hash representations. In
essence, hash codes are encouraged to not only preserve the layer-
wise semantic similarities encoded by the label hierarchy, but also
retain the hierarchical discriminative capabilities. Due to the lack
of benchmark datasets, apart from adapting the existing dataset
FashionVC from fashion domain, we create a dataset from the
online fashion platform Ssense consisting of 15, 696 image-text
pairs labeled by 32 hierarchical categories. Extensive experiments
on two real-world datasets demonstrate the superiority of ourmodel
over the state-of-the-art methods.
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1 INTRODUCTION
Recent years have witnessed the unprecedented growth of
multimedia data on the Internet, thanks to the flourish of
multimedia devices (e.g., smart mobile devices) that facilitate people
to present one instance with different media types, such as the
text and image. Accordingly, it gives rise to the emerging real-
world application of cross-media retrieval, which aims to search
the semantically similar instances in one modality (e.g., the image)
with a query of another modality(e.g., the text). To handle the large-
scale multi-modal data efficiently, cross-modal hashing [1, 5, 9, 21–
24, 36] has gained increasing attention from researchers due to
its remarkable advantages of low time and storage costs. In fact,
existing cross-modal hashing methods can be roughly classified
into two lines: unsupervised methods [7, 8, 12, 26, 30, 40, 43, 44] and
supervised methods [13, 15, 18, 38, 39, 41, 42]. Due to the limitation
that the semantic labels of instances cannot be well exploited to
strengthen the performance by unsupervised methods, increasing
efforts have been dedicated to the supervised manner.

Although existing supervised cross-modal hashing efforts have
achieved compelling success [6, 11, 13, 17, 38], they overlooked the
semantic correlations among labels of one instance. In fact, in many
real-world applications, labels of an instance can be correlated
with certain structure. For example, in the online fashion domain,
e.g., Ssense1, to facilitate the user browsing, fashion items are
artificially organized within a pre-established category hierarchy
and each item is thus labeled with a set of hierarchical categories
in different granularity. As shown in Figure 1, item I1 is annotated
by {Clothing, Skirt, Mini Skirt}, item I3 is associated with {Clothing,
Skirt, Long Skirt}, while item I7 involves {Clothing, Jeans, Wide
Leg Jeans}. Apparently, categories at different layers characterize
the semantic similarity between fashion items from different
perspectives. In terms of the finest-grained layer, items I1 and I3
should be semantically dissimilar because of their different specific
categories (i.e., “Mini Skirt” and “Long Skirt”), while regarding the
less finer-grained layer, I1 and I3 can be considered as semantically
similar due to their common coarse category of “Skirt”. In the light
of this, existing studies that treat all categories equally and define
the universal inter-modal semantic similarity to supervise the cross-
modal hashing can be inappropriate. Beyond that, in this work, we

1https://www.ssense.com/.
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Figure 1: Illustration of the label hierarchy.

aim to boost the performance of supervised hierarchical cross-
modal hashing by explicitly exploiting the rich semantic message
conveyed by the established category hierarchy [19].

However, fulfilling the task of supervised cross-modal hashing
with hierarchical labels is non-trivial due to the following
challenges. 1) How to utilize the hierarchical labels to enhance
the discriminative power of binary hash codes for the essential
semantic encoding constitutes a tough challenge. In a sense, the
more discriminative the hash codes are regarding the semantic
labels, the more effectively the inter-modal semantic similarity
can be measured. 2) How to employ the label hierarchy to
guide the cross-modal hashing is another crucial challenge.
Undoubtedly, hierarchical labels in different granularity convey
more comprehensive semantic information than the traditional
independent ones. It is thus inappropriate to resort to the
conventional cross-modal hashing that treats all labels equally
and measures the semantic similarity among instances simply by
counting their common labels. 3) The last challenge lies in the
lack of real-world benchmark dataset, whose data points should
involve multiple modalities and are hierarchically labeled. Notably,
although there are certain hierarchical-labeled datasets, such as the
ImageNet [25] and CIFAR [33], they suffer from the limitation of
the unimodal data points (e.g., pure images) and thus cannot be
adopted for the cross-modal hashing research.

To address the aforementioned challenges, we propose a new
supervised hierarchical cross-modal hashing (HiCHNet) method
to unify the hierarchical discriminative learning and regularized
cross-modal hashing, as shown in Figure 2. In particular, HiCHNet
is comprised of an end-to-end dual-path neural network, where
each path refers to one modality. To take full advantage of the pre-
established label hierarchy, we first characterize each modality
of the instance with a set of layer-wise hash representations,
corresponding to categories in different granularity. Thereafter,
on one hand, we impose the representations of different layers
to be discriminative for their corresponding categories. On the
other hand, we introduce the layer-wise regularizations as to
comprehensively preserve the semantic similarities encoded by
the hierarchy. Ultimately, the final binary hash codes, derived from
the concatenation of layer-wise hash codes, are encouraged to
retain the hierarchical discriminative capabilities and preserve
the layer-wise semantic similarities simultaneously. As for the
lack of benchmark dataset, we first recognize an existing publicly
available dataset FashionVC [31], originally constructed in the

context of complementary clothing matching [31], and naturally
adapt it for the hierarchical cross-modal hashing. Meanwhile, we
further build a benchmark dataset consisting of 15, 696 image-text
pairs from the global online fashion platform Ssense, labeled by 32
hierarchical categories. Extensive experiments on two real-world
datasets demonstrate the superiority of our model over the state-
of-the-art methods.

Our main contributions can be summarized in threefold:
• To the best of our knowledge, this is the first attempt to
tackle the real-world problem of cross-modal hashing with
hierarchical labels, which has especially great demand in the
fashion domain.

• We propose a novel supervised hierarchical cross-modal
hashing framework, which is able to seamlessly integrate
the hierarchical discriminative learning and the regularized
cross-modal hashing.

• We build a large-scale benchmark dataset from the global
fashion platform Ssense, which consists of 15, 696 image-text
pairs. Extensive experiments demonstrate the superiority
of HiCHNet over the state-of-the-art methods. As a
byproduct, we have released the datasets, codes, and involved
parameters to benefit other researchers2.

The remainder of this paper is organized as follows. Section 2
briefly reviews the related work and Section 3 details the proposed
model. Experimental results and analyses on two datasets are
presented in Section 4, followed by our concluding remarks and
future work in Section 5.

2 RELATEDWORK
Existing cross-modal hashing methods can be roughly divided into
two categories: unsupervised and supervised methods.

Unsupervised methods [8, 10, 12, 30, 43] focus on learning hash
functions by exploiting the intra- and inter-modality relations with
unlabeled training data. For example, Song et al. [30] proposed
a novel inter-media hashing (IMH) model to linearly project the
heterogeneous data sources into a common Hamming space by co-
regularizing the inter- and intra-media consistency. To overcome
the limitation of linear projections, Zhou et al. [43] presented
the latent semantic sparse hashing (LSSH) model, where the
high-level latent semantic information conveyed by the images
and texts is well-captured by employing Sparse Coding and
Matrix Factorization. Noting that the quantization errors should be
punished to improve the performance, Irie et al. [12] proposed the
alternating co-quantization (ACQ) scheme that alternately seeks the
binary quantizers for each modality by jointly solving the subspace
learning and binary quantization. Even integrated with the simple
CCA [10], ACQ can boost the retrieval performance significantly.
Overall, although existing unsupervised methods have achieved
promising performance, they neglected the value of the existing
semantic label information and hence suffer from the inferior
performance.

Supervised methods [13, 15, 15, 17, 28, 38, 39, 41] work on
leveraging the semantic labels of training data as the supervision
to guide the hash codes learning and boost the performance. For
example, Zhang et al. [39] put forward an effective semantic

2https://drive.google.com/drive/folders/1v1qu3AwSPucmjfuw2r81ORD9HjyK8Hdr.
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Figure 2: Illustration of the proposed scheme. HiCHNet characterizes each modality of the instance with a set of layer-wise
hash representations via the corresponding neural network, which is regularized to retain the hierarchical discriminative
capability and hence preserve the layer-wise semantic similarities derived from the ground truth labels.

correlation maximization (SCM) method to seamlessly integrate
the semantic labels into the hashing learning. In addition, to
capture the underlying semantic information, Yu et al. [38]
introduced a two-stage discriminative coupled dictionary hashing
(DCDH) model to jointly learn the coupled dictionaries and hash
functions for both modalities. Furthermore, arguing that the
semantic affinities can be used to guide the hashing, Lin et al. [17]
formulated a semantics-preserving hashing (SePH) paradigmwhere
the probability distribution generated from semantic affinities is
approximated via minimizing the Kullback-Leibler divergence. It
is worth noting that the above methods mainly rely on the hand-
crafted features, which inevitably leads to the separate feature
extraction and hash codes learning procedures. To overcome this
drawback, Jiang et al.[13] established an end-to-end deep cross-
modal hashing (DCMH) framework with deep neural networks,
one for each modality to perform feature learning from scratch.
In spite of the compelling success achieved by these methods in
general cases, far too little attention has been paid to the real-world
domains with hierarchical labels like the fashion domain. In fact, it
is inappropriate to directly apply existing supervised methods that
treat all labels equally and overlook the hierarchical relatedness
among them.

In fact, the concept of hierarchy has been noticed by many
researchers [16, 27, 32, 35]. For example, Song et al. [32] explored
the hierarchical relatedness among user interests and proposed
a structure-constrained multi-source multi-task learning scheme
for the user interest inference. For the hashing domain, Wang et
al. [35] presented a supervised hierarchical deep hashing method
in the context of unimodal hashing. Nevertheless, the potential
of hierarchical labels in cross-modal hashing has not been well
validated, which is the major concern of this paper.

3 PRELIMINARIES
We first introduce the necessary notations throughout the paper,
and then define the studied task.

3.1 Notation
Suppose that we have a set of N instances E = {ei }

N
i=1 labeled

by a set of categories that are not independent but correlated
with a hierarchy of (K + 1) layers. We compile the (K + 1) layers
from top to bottom with the index set {0, 1, · · · ,K}, where the 0-th
layer corresponds to the root node. Let ck denote the number of
nodes at the k-th layer. As for the i-th instance ei = (vi , ti ,Yi ),
vi ∈ Rdv and ti ∈ Rdt stand for the original image and text
feature vectors, where dv and dt represent the respective feature
dimensions. Yi =

{
yki

}K
k=1

denotes the set of label vectors for

ei , where yki = [yki1,y
k
i2, · · · ,y

k
ick

]T ∈ {0, 1}ck is the label vector
pertaining to the categories of the k-th layer3. In particular, yki j = 1,
if the i-th instance ei is labeled with the j-th category at the
k-th layer, otherwise yki j = 0. For simplicity, we define Yk =

[yk1 , y
k
2 , · · · , y

k
N ] ∈ {0, 1}ck×N as the label matrix for the k-th layer

of all instances in E. Moreover, according to the label hierarchy,
we introduce a set of K layer-wise inter-modal similarity matrices
S =

{
Sk

}K
k=1

, where Sk ∈ {0, 1}N×N corresponds to the similarities
among all instances regarding categories in the k-th layer. In
particular, the (i, j)-th entry Ski j = 1 if the image of instance ei
and text of instance ej share the identical label for the k-th layer
(i.e., yki = ykj ), otherwise S

k
i j = 0. Table 1 summarizes the main

notations used in this paper.
3Here, we do not consider the 0-th layer of the root node.



Table 1: Summary of the main notations.

Notation Explanation
K Num. of layers in the hierarchy except the root.
L The length of the hash codes.
ei The i-th instance.
yki Label vector of ei pertaining to the k-th layer.
Sk Inter-modal similarity matrix of the k-th layer.

f v (f t ) Hash function for the image (text) modality.
Θv (Θt ) Parameters of f v (f t ).
vi (ti ) Original image (text) feature vector of ei .

bvi (bti ) Image (text) hash codes of ei .
hvi (hti ) Image (text) hash representation of ei .

3.2 Problem Formulation
In this work, we aim to devise an end-to-end supervised hierarchical
cross-modal hashing learning scheme to obtain the accurate image
and text L-bit hash codes for the i-th instance, namely, bvi ∈

{−1, 1}L and bti ∈ {−1, 1}L . Based on the hash codes, we can
measure the inter-modal similarities using the Hamming distance
asdisH (bvi , btj ) = 1

2 (L−bTvi btj ) and hence perform the cross-modal
retrieval.

To simplify the presentation, we focus on the cross-modal
retrieval for the bimodal data (i.e., the image and text). Without
losing the generality, our task can be easily extended to the
scenarios with multiple modalities. In particular, we aim to
learn hash codes for the image and text modalities (i.e., bvi =
sдn(f v (vi ; Θv )) and bti = sдn(f t (ti ; Θt ))), respectively. sдn(·) is
the element-wise sign function, which outputs “ + 1” for positive
real numbers and “ − 1” for negative ones. Here, f v and f t refer to
the hashing networks with parameters Θv and Θt to be learned.

4 THE PROPOSED MODEL
In this section, we present the proposed HiCHNet, as the major
novelty, which is able to effectively leverage the label hierarchy
information for improving the learning of cross-modal hash codes.
In particular, we first set up layer-wise hash representations for
capturing semantic characteristics in different granularity and then
enhance their discriminative power with hierarchical discriminative
learning, and finally instruct the hashing learning with regularized
cross-modal hashing.

4.1 Layer-wise Hash Representation
Intuitively, as different modalities of one instance are semantically
correlated, an effective hashing model should be able to preserve
the similarity between different modalities for the same instance.
Nevertheless, it is inadvisable to directly measure the inter-modal
similarity from the original heterogeneous feature spaces.

Inspired by the huge success of the representation learning, we
adopt deep neural networks to obtain more powerful image and
text representations. Regarding the image modality, we utilize the
convolution neural network (CNN) adapted from [4] consisting
of five convolution layers followed by two fully-connected layers.
In particular, given the i-th instance, we feed its original image
feature vi (i.e., the pixel vector) to the CNNs, and adopt the fc7
layer output as the image representation ṽi . As for the text modality,

in the similar manner, we employ a neural network comprising one
fully-connected layer [20] to transform the original text feature
vector ti into the text representation t̃i .

Having obtained the image and text representations of instances,
we can perform the respective projection from the representation
space to the Hamming space and derive the hash codes for each
modality. To fully exploit the hierarchy, our idea is to set layer-wise
representations for each modality corresponding to the category
layers of the hierarchy with different granularity. Formally, we
equally divide the general L-bit hash codes into K layer-wise hash
codes, namely, bvi = [b1

vi , b
2
vi , · · · , b

K
vi ] and bti = [b1

ti , b
2
ti , · · · , b

K
ti ],

where bkvi and bkti refer to the image and text hash codes of instance
ei regarding the k-th layer.

For the image modality, we feed the image representation ṽi to
K separate networks simultaneously, each of which comprises one
fully-connected layer as follows,

hkvi = s(Wk
v ṽi + gkv ), k = 1, · · · ,K, (1)

where hkvi ∈ Rzk refers to the image hash representation for the
k-th layer with the dimension of zk , and Wk

v and gkv are the weight
matrix and bias vector, respectively. And s : R 7→ R is a non-linear
function applied element wise4. Then, based on the set of image
hash representations for the i-th instance

{
hkvi

}K
k=1

, we can get the
binary layer-wise image hash codes as follows,

bkvi = sдn(hkvi ), k = 1, · · · ,K, (2)

where bkvi ∈ {−1, 1}zk . In a similar manner, we can derive the

layer-wise text hash representations
{
hkti

}K
k=1

and binary text hash

codes
{
bkti

}K
k=1

for the i-th instance.

4.2 Hierarchical Discriminative Learning
In a sense, as to comprehensively encode the necessary semantic
information from the hierarchy, the layer-wise hash codes, which
can be regarded as the projected representations for instances in
the Hamming space, should be discriminative towards the semantic
classification in different granularity over the hierarchy. Towards
this end, we introduce K layer-wise multiple classification tasks
simultaneously. For the k-th multi-classification, we particularly
take the k-th layer hash representations as the input and labels
regarding the k-th layer of the hierarchy as the ground truth.
For simplicity, we take the discriminative learning of the image
modality as an example and that of the text modality can be
effortlessly achieved in the same manner.

In particular, we feed K layer-wise image hash representations
of the i-th instance to K multi-layer perceptrons as follows,

pkvi = so f tmax (Uk
vhkvi + qkv ), k = 1, · · · ,K, (3)

where pkvi ∈ R
ck refers to the output class distribution pertaining to

the k-th layer of the hierarchy, Uk
v and qkv are the weight matrix and

bias vector, respectively. Considering that categories in different
granularity may contribute differently to the discriminative
regularization, we incorporate the layer confidence for each layer.

4In this work, we use the hyperbolic tangent function.



Ultimately, adopting the negative log-likelihood loss for theK layer-
wise discriminative classifications, we have,

Ψh = −
K∑
k=1

ρk

N∑
i=1

[
(yki )T log(pkvi ) + (yki )T log(pkti )

]
, (4)

where ρk refers to the confidence of the k-th layer and loд(·) is the
element-wise logarithm function.

4.3 Regularized Cross-modal Hashing
Above, we have considered the layer-wise correspondence between
the hash codes and the category hierarchy. In this part, we
first employ the layer-wise regularizations for comprehensively
preserving the semantic similarities between different modalities.
Then, we incorporate the binarization difference penalizing to
further enhance the cross-modal hashing learning.

Semantic Similarity Preserving. To ensure the performance
of cross-modal hashing, one major concern is to preserve the inter-
modal semantic similarity between two instances when they are
mapped from the original representation space to the Hamming
space. Consequently, it is desirable to maximize the Hamming
distance between two instances whose semantic similarity is
0, while minimizing that with the similarity of 1. Traditionally,
existing researches treat all categories independently and only
define the universal semantic similarity to preserve, where the
category hierarchy has not been utilized. In fact, the hash codes of
instances from correlated categories, (e.g., “Long Skirt” and “Mini
Skirt” are correlated by sharing the same ancestor category “Skirt”)
tend to be more similar than that from uncorrelated ones (e.g.,
“Wide Leg Jeans” and “Mini Skirt”). Accordingly, we also define the
semantic similarity in the layer-wise manner as follows,

ϕki j = 1
2 (hkvi )

T hktj , (5)

where ϕki j denotes the semantic similarity between image of
instance ei and text of instance ej regarding the k-th layer. The
hash representations hkvi and hktj can be treated as the continuous
surrogates of the binary hash codes bkvi and bktj ,k = 1, 2, · · · ,K, i, j =
1, 2, · · · ,N , respectively.

Similar to [13], we encourage ϕki j to approximate the binary
ground truth Ski j as follows,

L(ϕki j |S
k
i j ) = σ (ϕki j )

Ski j (1 − σ (ϕki j ))
(1−Ski j ), (6)

where σ (·) is the sigmoid function. Besides, considering that labels
in different granularity at different layers may possess different
capabilities regarding the semantic similarity regularization, we
further introduce the layer confidence. Simple algebra computations
enable us to reach the following objective function,

Γ1 = −
K∑
k=1

τk

N∑
i , j=1

(Ski jϕ
k
i j − log(1 + eϕ

k
i j )), (7)

where τk denotes the layer confidence for the k-th layer.
Binarization Difference Penalizing.Apart from the semantic

preserving regularization on hkvi ’s and hktj ’s, we further regularize
the binarization differences between hkvi and bkvi , hkti and bkti ,
respectively, as to derive the optimal continuous surrogates of

Algorithm 1 Supervised Hierarchical Cross-Modal Hashing
Input: Instance set E, similarity matrix set S.
Output: Parameters Θv and Θt , hash code matrices

{
Bk

}K
k=1

.
Initialization
Initialize parameters: α , β , γ , τk , ρk , Θv , Θt , mini-batch size:m,
iteration number:M = ⌈N /m⌉.
repeat

for iter = 1, 2, · · · ,M do
Randomly sample a batch ofm instances from E.
Feed them into f v and compute

{
Hk
v

}K
k=1

.
Update Θv according to Eqn. (11) and (12).

end for
for iter = 1, 2, · · · ,M do
Randomly sample a batch ofm instances from E.
Feed them into f t and compute

{
Hk
t

}K
k=1

.
Update Θt according to Eqn. (11) and (12).

end for
Compute

{
Bk

}K
k=1

according to Eqn. (13).
until Convergence

the binary hash codes. For simplicity, we introduce two sets of
layer-wise hash representation matrices

{
Hk
v

}K
k=1

and
{
Hk
t

}K
k=1

for the image and text modalities, respectively, where Hk
v =

[hkv1 , h
k
v2 , · · · , h

k
vN ] ∈ Rzk×N and Hk

t = [hkt1
, hkt2
, · · · , hktN ] ∈

Rzk×N . Moreover, we can also define two sets of binary layer-wise
hash code matrices Bv =

{
Bkv

}K
k=1

and Bt =
{
Bkt

}K
k=1

, where Bkv =

[bkv1 , b
k
v2 , · · · , b

k
vN ] ∈ {−1, 1}zk×N and Bkt = [bkt1

, bkt2
, · · · , bktN ] ∈

{−1, 1}zk×N . The binarization difference regularization thus can
be written as follows,

Γ2 =
K∑
k=1

( 

Bkv − Hk
v


2
F +



Bkt − Hk
t


2
F

)
, (8)

where


·

F denotes the Frobenius norm.

Consequently, we have the following objective function towards
the hierarchical cross-modal hashing,

Ψr = −
K∑
k=1

τk

N∑
i , j=1

(
Ski jϕ

k
i j − log(1 + eϕ

k
i j )
)

+ α
( 

Bkv − Hk

v


2
F +



Bkt − Hk
t


2
F

)
+ β

( 

Hk
va



2
2 +



Hk
t a



2
2

)
,

(9)

where α and β are the nonnegative tradeoff parameters and a =
[1, 1, · · · , 1]T ∈ RN , and



·

2 denotes the Euclidean norm. The
last term is to balance the learned hash codes and maximize the
information conveyed by each bit of the codes [13].

Notably, to bridge the semantic gap between different modalities
more effectively and boost the performance of the cross-modal
hashing, we adopt the unified binary hash codes (i.e.,Bkv = Bkt = Bk )
in the training procedure. Towards this end, we slightly adapt the



(a) FashionVC. (b) Ssense.

Figure 3: Label hierarchy of datasets FashionVC and Ssense.

derivation of the binary hash code matrix Bk as follows,

Bk = sдn
(
Hk
v + Hk

t

)
. (10)

4.4 Joint Model and Optimization
Integrating the two key components of the hierarchical discriminative
learning and regularized cross-modal hashing, we reach the final
objective formulation Ψ as follows,

min
Bk ,Θv ,Θt

γΨh + (1 − γ )Ψr , (11)

where γ is the nonnegative tradeoff parameter. Overall, we expect
the layer-wise hash codes to be discriminative for the hierarchical
semantic classification as well as effective towards the cross-modal
hashing. It is worth noting that although we assume that both
modalities of each instance are observed in the training phase, our
scheme can also be easily extended to handle other scenarios, where
some training instances miss certain modality. Moreover, once the
model has been trained, we can directly use f v and f t to generate
hash codes for any instance with either one or two modalities and
fulfill the cross-modal retrieval task.

We adopt the alternating optimization strategy to solve Bk , Θv
and Θt , where we optimize one variable while fixing the other
two in each iteration and keep the iterative procedure until the
objective function converges. Due to that Θv and Θt share the
similar optimization, here we take Θv as an example. We first
calculate the derivative of Ψ with respect to hkvi as

∂Ψ
∂hkvi

=

1
2

N∑
j=1

(σ (ϕki j )h
k
tj − Ski jh

k
tj ) + 2α (hkvi − bkvi ) + 2βHk

va, (12)

where k = 1, · · · ,K , and ∂Ψ
∂Θv

can be derived from ∂Ψ
∂hkvi

using the

chain rule. As for the binary hash code matrix Bk , we have
∂Ψ
∂Bk

= 2α (2Bk − Hk
v − Hk

t ), (13)

where k = 1, · · · ,K . Indeed, ∂Ψ
∂hkvi

, ∂Ψ
∂hktj

and ∂Ψ
∂Bk

enable us to

solve all the parameters via the stochastic gradient descent (SGD)
with back-propagation. The overall procedure of the alternating
optimization is briefly summarized in Algorithm 1. As each iteration

Table 2: Statistics of our datasets.

FashionVC Ssense
Training Set 16, 862 13, 696
Retrieval Set 16, 862 13, 696
Query Set 3, 000 2, 000
Total Labels 35 32

The First Layer Labels 8 4
The Second Layer Labels 27 28

can decrease Ψ, whose lower bound is zero, we can guarantee the
convergence of Algorithm 1 [13, 15, 34].

5 EXPERIMENT
To evaluate the proposed method, we conducted extensive
experiments on two real-world datasets by answering the following
research questions:

• Does the proposed HiCHNet outperform the state-of-the-art
methods?

• What is the component level contribution of HiCHNet?
• What is the effect of the label hierarchy?

In this section, we first introduce the datasets as well as the
experimental settings, and then provide the experimental results
with detailed discussions over each above research question.

5.1 Datasets
For the evaluation, we utilized two datasets: FashionVC and Ssense,
where the former is adapted from an existing dataset and the latter
is created by our own.

FashionVC. On one hand, we adopted the public dataset
FashionVC [31] originally collected from the online fashion
community Polyvore5 in the context of clothing matching.
FashionVC consists of 20, 726 multi-modal fashion items (e.g.,
tops and bottoms), where each fashion item is composed of a
visual image with a clean background, a textual description and
hierarchical categories in different granularity. The multi-modal
and hierarchically-labeled features of FashionVC naturally propel
us to adapt it for the purpose of hierarchical cross-modal hashing.
Notably, to guarantee the quality of dataset, we manually removed
the noisy items with inconsistent labels and filtered out the
categories with less than 25 items. Moreover, we noticed that to

5Polyvore has been acquired by the global fashion platform Ssense in 2018.



Table 3: The MAP scores of different methods on FashionVC and Ssense, where two retrieval tasks and different hash code
lengths are adopted. The last row refers to the performance improvement of HiCHNet over the best baseline. The shallow
learning baselines use the SIFT features and the best accuracy is shown in boldface.

Method
FashionVC Ssense

Image→Text Text→Image Image→Text Text→Image
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

CCA 0.150 0.130 0.114 0.103 0.141 0.126 0.112 0.102 0.349 0.292 0.240 0.195 0.355 0.302 0.245 0.195
SCM-Or 0.176 0.128 0.109 0.095 0.159 0.121 0.102 0.091 0.299 0.222 0.169 0.145 0.268 0.181 0.126 0.101
SCM-Se 0.303 0.328 0.355 0.217 0.254 0.288 0.308 0.175 0.489 0.504 0.516 0.498 0.433 0.457 0.476 0.457
DCH 0.224 0.246 0.266 0.312 0.209 0.254 0.300 0.299 0.376 0.419 0.480 0.439 0.434 0.457 0.595 0.611
CDQ 0.456 0.583 0.559 0.621 0.445 0.593 0.538 0.598 0.769 0.778 0.856 0.840 0.766 0.802 0.864 0.806
SSAH 0.609 0.661 0.703 0.391 0.724 0.794 0.814 0.433 0.443 0.374 0.220 0.149 0.449 0.365 0.223 0.113
DCMH 0.502 0.579 0.603 0.623 0.589 0.638 0.665 0.679 0.608 0.635 0.664 0.690 0.606 0.630 0.666 0.687
HiCHNet 0.611 0.688 0.721 0.715 0.818 0.871 0.884 0.885 0.696 0.822 0.880 0.895 0.676 0.838 0.873 0.916

↑ 0.2% 2.7% 1.8% 9.2% 9.4% 7.7% 7.0% 20.6% − 4.4% 2.4% 5.5% − 3.6% 0.9% 11.0%

Table 4: The MAP scores of different methods on two datasets, where the VGG-F feature is used for shallow learning baselines.
The best accuracy is shown in boldface.

Method
FashionVC Ssense

Image→Text Text→Image Image→Text Text→Image
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

CCA 0.217 0.197 0.182 0.162 0.243 0.224 0.208 0.186 0.460 0.494 0.390 0.301 0.521 0.567 0.472 0.377
SCM-Or 0.256 0.176 0.141 0.121 0.278 0.185 0.133 0.110 0.421 0.295 0.226 0.184 0.372 0.255 0.167 0.123
SCM-Se 0.429 0.462 0.373 0.486 0.522 0.564 0.431 0.593 0.538 0.577 0.584 0.574 0.557 0.600 0.606 0.599
DCH 0.356 0.525 0.566 0.602 0.420 0.586 0.627 0.705 0.600 0.664 0.756 0.589 0.670 0.779 0.843 0.734
CDQ 0.456 0.583 0.559 0.621 0.445 0.593 0.538 0.598 0.769 0.778 0.856 0.840 0.766 0.802 0.864 0.806
SSAH 0.609 0.661 0.703 0.391 0.724 0.794 0.814 0.433 0.443 0.374 0.220 0.149 0.449 0.365 0.223 0.113
DCMH 0.502 0.579 0.603 0.623 0.589 0.638 0.665 0.679 0.608 0.635 0.664 0.690 0.606 0.630 0.666 0.687
HiCHNet 0.611 0.688 0.721 0.715 0.818 0.871 0.884 0.885 0.696 0.822 0.880 0.895 0.676 0.838 0.873 0.916

↑ 0.2% 2.7% 1.8% 9.2% 9.4% 7.7% 7.0% 18.0% − 4.4% 2.4% 5.5% − 3.6% 0.9% 11.0%

facilitate users to explore the website, Polyvore separates all the
fashion items into two categories: “men’s fashion” and “women’s
fashion”. Nevertheless, for the same category (e.g., the ‘T-shirt’ or
‘Jeans’), the men’s and women’s garments can be highly visually
similar and difficult to be distinguished. We thus excluded these
two general categories, and merged the common sub-categories
accordingly. Finally, we obtained 19, 862 hierarchically-labeled
multi-modal training instances, where the label hierarchy consists
of 35 categories with two layers, as shown in Figure 3(a).

Ssense. On the other hand, we created our own dataset by
crawling the global online fashion platform Ssense, where similar to
Polyvore, fashion items with rich multi-modal data are annotated
by a set of pre-defined hierarchical categories. In particular, we
collected all the fashion items on Ssense, including their visual
images, textural descriptions and hierarchical labels during the
period of December 14 to 16, 2018 and obtained 25, 947 raw labeled
image-text instances. Pertaining to the dataset preprocessing, we
removed the noisy instances whose images involve multiple items
(e.g., both a coat and a dress appear in one image). Due to the
similar concern with FashionVC, we discarded the categories ‘men’
as well as ‘women’. Thereafter, we filtered out the categories with
less than 70 instances to avoid the unbalanced dataset. Ultimately,
we obtained the benchmark dataset of 15, 696 image-text instances

(a) FashionVC (b) Ssense

Figure 4: Performance of HiCHNet and DCMH on
different categories of FashionVC and Ssense in the
task of “Text→Image”.

labeled with a two-layer category hierarchy, as shown in Figure 3(b).

5.2 Experimental Settings
Evaluation. In this work, we evaluated our method in the context
of two classic cross-modal retrieval tasks: querying the image
database with textual descriptions (“Text→Image”) and querying
the text database with given image examples (“Image→Text”).
Towards this end, for FashionVC, we randomly sampled 15% of
the dataset to form the query set and kept the remaining 85% as
the training and retrieval set. Similarly, regarding Ssense, we took



13% of the dataset as the query database and the rest as the training
and retrieval database. Statistics regarding our datasets are listed
in Table 2. For each cross-modal retrieval task, we utilized the
conventional retrieval protocol of Hamming ranking, where the
mean average precision (MAP) [37] was employed to measure the
performance.

Baselines. We compared the proposed HiCHNet with six state-
of-the-art baselines including five supervised methods: SCM [39],
CDQ [2], DCH [37], SSAH [15] and DCMH [13], and one
unsupervised method: CCA [10]. As SCM has both orthogonal
projection and sequential learning modes, we accordingly derived
two methods: SCM-Or and SCM-Se. Moreover, we utilized the
finest-grained categories as the ground truth for the supervised
methods. Notably, CDQ, SSAH, DCMH and HiCHNet are deep
learning-based methods, while the others are the shallow learning
methods. We thus directly fed the raw images and texts as input
for CDQ, SSAH, DCMH and HiCHNet, where we unified the image
size to 224 × 224 × 3 by proportionally resizing and padding. The
raw text of each instance in FashionVC and Ssense was respectively
represented as a 2685-D and 4945-D bag-of-words vector. Regarding
shallow learning methods, for fairness, we used both the hand-
crafted 500-D SIFT [14] feature and the deep VGG-F feature [3]
extracted from the neural networks pre-trained on the ImageNet.
Ultimately, we implemented HiCHNet with the open source deep
learning software library Tensorflow, and all baselines using the
implementations provided by the original authors.

Parameter Setting.We initialized the first seven layers of the
deep neural networks for image representation (ṽi ’s) extraction
with the pre-trained VGG-F network parameters [4], while all the
other parameters in the neural networks were initialized randomly.
Pertaining to the optimization, we utilized the stochastic gradient
descent (SGD) [29] with the momentum factor as 0.9. The grid
search strategy was adopted to determine the optimal values for the
regularization parameters (i.e., τk ’s, ρk ’s,α , β andγ ). In addition, we
empirically set the batch-size to be 128 and the maximum number
of iterations as 500 to ensure the convergence.

5.3 On Model Comparison (RQ1)
To comprehensively evaluate the proposed HiCHNet, we first
reported the MAP results of different methods in Tables 3 and 4,
where the shallow learning baselines are based on the SIFT feature
and deep VGG-F feature, respectively. From Tables 3 and 4, we
can draw the following observations: 1) our HiCHNet consistently
outperforms all the other baselines with different hash code lengths
on FashionVC. In particular, with the best baseline, HiCHNet
achieves the significant average improvement of 3.5%, 10.9%, 4.1%
and 5.2% in both tasks of “Image→Text” and “Text→Image” on
FashionVC and Ssense, respectively. This can be attributed to the
fact that HiCHNet is able to not only retain the discriminative
capability of the hash codes but also preserve more accurate and
comprehensive layer-wise semantic similarities between different
modalities. 2) Overall, the performance of HiCHNet is significantly
better than all baselines, except for the CDQ on Ssense with the hash
code lengths of 16. 3) Meanwhile, the shallow learning baselines
with VGG-F feature surpass those based on the SIFT feature, which
shows the advantage of the deep learning in feature extraction. 4)

(a) γ (b) ρ1, τ1

Figure 5: Sensitivity analysis of the hyper-parameters.

Interestingly, nearly all methods show the better performance on
Ssense than FashionVC. One possible explanation is that instances
in Ssense involvesmore diverse categories, ranging from accessaries
to shoes, and thus are easier to be distinguished than FashionVC. 5)
The performance of almost all methods can be strengthened with
the hash code length increasing, which confirms the fact that more
information regarding instances can be encoded by longer hash
codes. Notably, if not declared, the hash code length is set as 128
for all the following experiments.

To gain more deep insights, we further investigated the
performance of the proposed HiCHNet on difference categories.
Here we chose DCMH as our baseline due to the fact that it
also adopts the deep learning networks like ours and achieves
overall satisfactory performance. As can be seen from Figure 4,
our HiCHNet consistently shows superiority over DCMH across
different categories on both datasets, proving the effectiveness of
our model once again. Meanwhile, we find that the MAP scores of
different categories are largely different. For example, in Figure 4(a),
the performance of HiCHNet on “Short” is far better than that of
“Activewear”. One possible reason is that shorts are more visually
distinctive than activewears.

5.4 On Component Analysis (RQ2)
To verify the effectiveness of each key component in our model,
namely, the hierarchical discriminative learning and regularized
cross-modal hashing, we investigated the nonnegative trade-off
parameter γ in Eqn. (11). The sensitivity analysis of γ on Ssense is
shown in Figure 5(a), where we varied γ from 0.1 to 1 with a step of
0.1. As can be seen, the optimal performance can be achieved when
γ = 0.5, indicating that both components are essential to HiCHNet
and their contributions are comparable.

As each layer of the hierarchy is assigned with the confidence
in both components of hierarchical discriminative learning and
regularized cross-modal hashing, we further studied the impact of
the layer confidence on our HiCHNet. For simplicity, we unified the
layer confidence for both components and set ρ1 = τ1 and ρ2 = τ2.
We then changed ρ1 from 0.1 to 0.9 with the step of 0.1, while

(a) Image→Text (b) Text→Image

Figure 6: Performance of HiCHNet and HiCHNet-flat on
FashionVC.
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Figure 7: Illustration of ranking results from the whole retrieval set. The irrelevant images are highlighted in red boxes.

Loafers Loafers Sandals Loafers Dress Backpack Boots Eyewear Jeans Sneakers 
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HiCHNet 

                                        Text Query :    Black Patent Rudyard Loafers.  

DCMH 

Figure 8: Illustration of ranking results from the constrained retrieval set.

keeping ρ1 + ρ2 = 1 and τ1 + τ2 = 1. Figure 5(b) shows the MAP
curve with respect to coefficients ρ1 and τ1 on Ssense, where we
fixed the value of parameter γ as 0.5 and code length as 128 bits. We
observed that the best performance can be obtained by ρ1 = τ1 = 0.2
(i.e., ρ2 = τ2 = 0.8), which implies that both fine-grained and coarse-
grained categories complementarily characterize the fashion items
and contribute to the semantic similarity encoding. Moreover, this
also reflects that fine-grained categories are more powerful than
the coarse-grained ones, which is reasonable as fine-grained labels
encode more detailed semantic information of the instance and
provide more accurate instruction on the hash code learning.

5.5 On Label Hierarchy (RQ3)
To better explain the benefit of incorporating the label hierarchy
especially in cross-modal hashing, we conducted the comparative
experiment with one derivative of our model that does not
take the hierarchy into consideration and only contain the K-
th discriminative learning and the K-th regularized cross-modal
hashing, termed as HiCHNet-flat. Figure 6 shows the performance
of HiCHNet and HiCHNet-flat on FashionVC. As can be seen,
HiCHNet consistently outperforms HiCHNet-flat no matter what
the hash code length is set, and this well validates the necessity of
taking into account the label hierarchy in the context of cross-modal
hashing in fashion domain.

To thoroughly understand our model, we provided certain
intuitive ranking results of HiCHNet and DCMH with two settings.
On one hand, we listed the top 10 image results retrieved from
the whole retrieval set in Figure 7, where the incorrect images are
highlighted by red boxes. As can be seen, overall, our model is able
to not only return fewer irrelevant images but also rank them at
bottom positions as compared with DCMH, which confirms the
superior performance of our model. On the other hand, towards
more clear illustration, we replaced the whole retrieval set with a
constrained subset of 10 images involving different categories and
showed the retrieval results in Figure 8. As can be seen, HiCHNet

outperforms DCMH again by ranking all the relevant results in
the top places. Moreover, interestingly, we found that even for
irrelevant instances, HiCHNet would rank them based on their
semantic similarity to the given query irrelevance. For example,
given the text query regarding category “Loafers”, HiCHNet ranked
“Boots” before “Dress” although both “Boots” and “Dress” are
irrelevant to the query.

6 CONCLUSION AND FUTUREWORK
In this paper, we focus on studying the problem of cross-media
retrieval with hierarchical categories, which has the great demand
in fashion domain. We present a novel end-to-end supervised
hierarchical cross-modal hashing method, consisting of two
key components: the hierarchical discriminative learning and
regularized cross-modal hashing. In addition, we constructed a
benchmark dataset consisting of 15, 696 image-text pairs from
Ssense, labeled by 32 hierarchical categories. Extensive experiments
have been conducted on real-world datasets and the results
demonstrate the effectiveness of the proposed scheme and validate
the benefits of utilizing the category hierarchy in cross-modal
hashing. Interestingly, we found that the two key components
comparably contribute to cross-modal hashing, which confirms the
necessity of retaining the hierarchical discriminative capability of
hash codes. Currently, we adopt the universal confidence for each
layer. In future, we plan to adaptively assign the layer confidence
for different instances to further improve the performance.
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