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ABSTRACT

Recent years have witnessed a growing trend of fashion com-

patibility modeling, which scores the matching degree of the

given outfit and then provides people with some dressing advice.

Existing methods have primarily solved this problem by analyzing

the discrete interaction among multiple complementary items.

However, the fashion items would present certain occlusion and

deformation when they are worn on the body. Therefore, the

discrete item interaction cannot capture the fashion compatibility

in a combined manner due to the neglect of a crucial factor: the

overall try-on appearance. In light of this, we propose a multi-

modal try-on-guided compatibility modeling scheme to jointly

characterize the discrete interaction and try-on appearance of the

outfit. In particular, we first propose a multi-modal try-on template

generator to automatically generate a try-on template from the

visual and textual information of the outfit, depicting the overall

look of its composing fashion items. Then, we introduce a new

compatibility modeling scheme which integrates the outfit try-on

appearance into the traditional discrete item interaction modeling.

To fulfill the proposal, we construct a large-scale real-world dataset

from SSENSE, named FOTOS, consisting of 11,000 well-matched

outfits and their corresponding realistic try-on images. Extensive

experiments have demonstrated its superiority to state-of-the-arts.
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Do these items go well
together?

Let me calculate their
interaction score…

I will try them on
and take the look
as a reference!

Figure 1: Previous methods analyze the fashion compati-

bility by directly modeling the interaction among fashion

items, while people usually prefer to try the outfit on to

evaluate its practical compatibility.

1 INTRODUCTION

With the recent flourishing of the e-commerce fashion industry, in-

creasing research attention has been paid to studying the automatic

fashion compatibility modeling among multiple complementary

fashion items (e.g., the khaki jacket, white icon t-shirt and blue

denim hot pants), which can benefit many downstream applications

in the fashion domain, such as the outfit recommendation [1–3],

personal wardrobe creation [4, 5], and fashion-oriented dialogue

systems [6, 7]. Existing approaches for the fashion compatibility

modeling mainly focus on analyzing the discrete interaction among

multiple complementary items [1–3, 8–10]. That is to measure

the compatibility of an outfit with certain metric over the latent

embeddings of its composing fashion items learned by the matched

and ill-matched outfits [10].

Although great success has been achieved by these efforts, they

overlook a crucial factor in the fashion compatibility modeling: the

overall try-on appearance. As a matter of fact, people usually try

the outfit on to evaluate its practical compatibility, where fashion

items would present certain occlusion and deformation when they

are worn on the body [11, 12], shown in Figure 1. Specifically, in

the outfit listed at the figure, all features of these fashion items

would be considered in the traditional discrete item interaction

modeling. Nevertheless, due to the deformation and occlusion of

the loose windbreaker, the center area of the t-shirt contributes

mostly to the fashion compatibility while the pattern on the sleeves

can be ignored. In light of this, the discrete item interaction may

be inadequate to thoroughly model the fashion compatibility.

Therefore, considering the practical concern, we aim to tackle

the problem of the compatibility modeling via jointly characterizing

the discrete item interaction and try-on appearance. Towards this

end, propelled by the recent success of generative networks in

enhancing the visual understanding in various tasks [13], we

Session 5A: Domain Specific Applications 1  SIGIR ’20, July 25–30, 2020, Virtual Event, China

771



Outfits

LS
TM

LS
TM

LS
TM...

Discrete Item 
Interaction Modeling

Try-on Appearance 
Modeling

Discrete 
Feature

Try-on 
Feature

Sequence Predict 
Loss L

Classify Loss L

Label

Score s

Generator Loss L

Figure 2: Illustration of the proposedTryOn-CM framework,

which could analyze the fashion compatibility from both

the discrete item interaction and try-on appearance.

propose to enhance the compatibility modeling performance with

the generative try-on appearancemodeling, where a try-on template,

depicting the overall look of several complementary fashion items,

can be generated to facilitate the fashion compatibility modeling.

Nevertheless, this is non-trivial due to the following challenges.

1) How to generate the realistic try-on template with appropriate

occlusion and deformation among fashion items poses the major

challenge. 2) Both the visual and textual information of fashion

items convey important signals to generate the realistic try-on

template. Therefore, how to fully explore the multi-modal data of

fashion items to synthesize the comprehensive try-on template is

the second challenge. 3) How to seamlessly integrate the try-on

appearance modeling and discrete item interaction modeling in a

unified end-to-end manner constitutes another tough challenge.

To address the aforementioned challenges, we present a multi-

modal Try-On-guided Compatibility Modeling scheme, named

TryOn-CM for simplicity, shown in Figure 2. It consists of two

key components: the try-on appearance modeling (blue part) and

discrete item interaction modeling (orange part), based on which

we can analyze the fashion compatibility from both the discrete

and combined manner. 1) As for the former component, to capture

the try-on appearance of an outfit, we develop a Multi-modal Try-

on Template Generator (MTTG), shown in Figure 3, to synthesize

the try-on template, where both visual and textual modalities of

fashion items are explored. In particular, the visual generator works

on synthesizing the try-on template based on images of composing

fashion items with the auto-encoder framework, while the textual

generator operates as the encoder of the visual generator taking

into account the latent consistency between the textual description

and visual image of the same fashion item. And 2) pertaining to the

later component, we adopt a bi-directional LSTM to uncover the

latent interaction among the list of complementary fashion items.

Ultimately, towards the comprehensive compatibility modeling, we

feed the compatibility features derived from these two components

into the multi-layer perception, and hence obtain the fashion

compatibility score, based on which we can recommend compatible

outfits for people. Besides, to evaluate the proposed TryOn-CM,

we have constructed a large-scale and real-world dataset from an

online fashion-oriented community website SSENSE1, consisting

1https://www.ssense.com/en-cn.

Textual
Generator

Visual
Generator

Straight 
Black Pants

Camel canvas 
jacket
Pink 

T-shirt

Attention
Vector

Try-on 
Template

Real Try-on 
Image

Consistent 
Loss L

Consistent 
Loss L

Generating Process from Texts

Texts

Images Text Descriptions

Figure 3: Structure of the multi-modal try-on template

generator, comprising a visual and textual generator. The

visual generating process is illustrated with the blue arrow

while the textual one is shown in the gray box.

of 11K Fashion Outfits with their Try-On imageS, named FOTOS

for simplicity.

Our main contributions can be summarized in threefold:

• We present a new compatibility modeling scheme that in-

tegrates the outfit try-on appearance into the discrete item

interaction modeling, which overcomes the limitation that ex-

isting methods mainly neglect the occlusion and deformation

factors of fashion items when they are tried on. To the best of

our knowledge, we are the first to consider the realistic try-on

appearance during the fashion compatibility modeling.

• A multi-modal try-on template generator is designed to

produce the try-on template based on the multi-modal data

of fashion items, where the latent consistency between the

textual description and visual image of the same fashion item

is well incorporated.

• We construct a new fashion dataset from SSENSE, named

FOTOS, consisting of 11,000 well-matched outfits composed

by 20,318 fashion items. Extensive experiments conducted

on the dataset demonstrate the superiority of our proposed

scheme over the state-of-the-art methods. We have released

the data and codes to facilitate other researchers2.

The remainder of this paper is structured as follows. Section 2

briefly reviews the related work. And then, the proposed TryOn-

CM scheme and newly constructed FOTOS dataset are introduced

in Section 3 and Section 4, respectively. Finally, we elaborate the

experimental results and analyses in Section 5, followed by our

concluding remarks and future work in Section 6.

2https://dxresearch.wixsite.com/tryon-cm
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2 RELATEDWORK

Generally, this work is related to the following two categories: the

image synthesis and fashion compatibility modeling.

Image Synthesis. At the initial stage, as the idea of the Auto-

Encoder (AE) [14] appeared, many variants, such as the denoising

AE [15] and variational AE [16], could cope with the image

synthesis task. However, most of them utilize the mean-square

loss as the loss function, resulting in fuzzier synthetic images. Later,

Goodfellow et al. [17] proposed the Generative Adversarial Nets

(GANs) by introducing an adversarial loss, which makes remarkable

progress in the image synthesis task. After that, some studies have

been dedicated to improve the original GANs. For example, Radford

et al. [18] proposed the DCGAN, which provides a specific network

topology for the training process. Besides, to incorporate desired

properties in generated samples, researchers also utilized different

signals, including the text [19] and attributes [20], as priors to

condition the image synthesis process. Besides, there are a few

studies investigating the problem of image-to-image translation via

conditional GANs [21], which transforms the given input image

to another one with a different representation. Recently, many

researchers have noticed the exciting prospect of GANs in the

fashion domain, specifically in the virtual try-on [11], which focuses

on generating the new images of the person wearing a new item.

Later, great efforts have been made to enhance the virtual try-on by

supporting the arbitrary poses [12, 22]. However, most of GANs are

very deep neural networks and suffers from the information loss and

degradation problem. Therefore, Ronneberger et al. [23] proposed

a u-net structure, which utilizes skip connections to merge more

features during the image synthesis. In this paper, we found the

physiology of the skip connection possesses the great superiority

and efficiency, based on which we further proposed a multi-modal

try-on template generator to generate the try-on template.

Fashion Compatibility Modeling. Due to the proliferation

of various online fashion communities and their importance in

fashion analyses, the outfit compatibility modeling has attracted

many researchers’ attention [1, 2, 8]. For example, Song et al. [1]

collected the outfit dataset from Polyvore and introduced a content-

based neural framework for the compatibility modeling between

the top and bottom. Meanwhile, Li et al. [24] and Chen et al. [9]

studied the outfit compatibility that involves multiple (more than

two) fashion items. Besides, some auxiliary information, such as

the item category [3], aesthetic characteristics [25] and domain

knowledge [8, 26], has been explored to promote the performance.

Recently, to enhance the practicality, there has been a growing trend

to make the compatibility more interpretable, where the attention

mechanism [27, 28] and interpretable feature learning [10, 29–31]

have been explored. Noticing that existing methods mainly focus

on the supervised learning and may present the unreliability of

the negative example sampling, several efforts have been made to

analyze the compatibility in an unsupervised way. For example,

Han et al. [2] and Chaidaroon et al. [32] used a bi-directional

LSTM and GRU to uncover the sequential relationship of the

outfit, respectively, and Hsiao et al. [4] proposed a style topic

model to analyze the relationship among fashion attributes. Despite

their effectiveness, the above methods mostly learn the outfit

compatibility based on the discrete item interaction. However,

in reality, fashion items present the occlusion and deformation

when they are tried on, making it hard to accurately model the

compatibility simply with the discrete interaction among fashion

items. Distinguished from these studies, we propose to analyze the

fashion compatibility from a combined manner where the try-on

appearance is incorporated into the discrete item interaction.

3 METHODOLOGY

In this section, we detail the proposed TryOn-CM shown in Figure 3.

In particular, we first formally define the research problem in

Subsection 3.1. Then in Subsection 3.2, we mainly model the

try-on appearance by proposing a multi-modal try-on template

generator, comprising a visual generator and a textual generator.

Following this, we introduce the discrete item interaction modeling

in Subsection 3.3. And finally, we present the multi-modal try-on-

guided compatibility modeling in Subsection 3.4.

3.1 Problem Formulation

Let O = [𝑜1, 𝑜2, ..., 𝑜𝑁 ] denote an outfit, where 𝑜𝑖 is the 𝑖-th fashion

item in the outfit arranged in a predefined order according to its

categories, i.e., from the outside to inside and then from the top to

bottom. Each fashion item 𝑜𝑖 is associated with its product image

and text description, which are represented by the pixel array 𝒗𝑖
and bag-of-word vector 𝒕𝑖 , respectively. In this work, we aim to

devise a comprehensive fashion compatibility modeling schemeM,

which automatically assesses the overall compatibility of the given

outfit based on the multi-modal data of its fashion items as follows:

𝑠 =M({𝒗𝑖 , 𝒕𝑖 }𝑁𝑖=1 |𝚯), (1)

where 𝑠 denotes the compatibility score of the outfit and 𝚯 is a set

of to-be-learned model parameters.

As a major novelty, apart from the traditional discrete item inter-

action modeling, we also take into account the try-on appearance,

which involves a try-on template generation for the given outfit.

To optimize our scheme, we build the training set of𝑀 outfits, i.e.,

Ω = {(O𝑖 , 𝑦𝑖 ) |𝑖 = 1, ..., 𝑀}, where O𝑖 is the 𝑖-th outfit with a set of

complementary fashion items, and 𝑦𝑖 stands for the ground truth

label, which equals to 1 if O𝑖 is a positive (compatible) outfit, and 0

otherwise. Besides, each positive outfit O𝑖 corresponds to a try-on

image 𝑃𝑖 , in which all the composing fashion items are put on a

fashion model and make a realistic outfit try-on appearance. For

convenience, the sets of positive and negative outfits are defined as

Ω+ = {(O𝑖 , 𝑦𝑖 , 𝑃𝑖 ) |𝑦𝑖 = 1} and Ω− = {(O𝑖 , 𝑦𝑖 ) |𝑦𝑖 = 0}, respectively.

3.2 Try-on Appearance Modeling

It is worth noting that, as a pioneering study on generative fashion

compatibility modeling, we focus on the general objective factors,

like the occlusion and deformation of fashion items in the try-on

appearance, but leave out the subjective factors, like the personal

identity and body shape. One naive approach to generating the

try-on template for an outfit to capture its try-on appearance is

directly conditioned on the visual images of all its fashion items.

However, the textural descriptions of fashion items also convey

important cues of fashion items, like the category and material,

which can guide the item layout and hence promote the try-on

template generation. Therefore, we take into account both visual
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and textual modalities of fashion items in the try-on template

generation. Accordingly, we devise the multi-modal try-on template

generator with a visual generator and a textual generator.

3.2.1 Visual Generator. We cast the task of the visual generator

as an image-to-image translation problem, where the input are

images of composing fashion items in the outfit and the output

is the try-on template image. Due to the remarkable performance

of the auto-encoder structure in this research line [23, 33, 34], we

adopt it in our visual generator.

In particular, the visual generator consists of an encoder 𝐸𝑣 for
compressing the multiple discrete fashion item images into a dense

vector, and a decoder 𝐷𝑣 for transforming the dense vector into the

synthesized try-on template image. The encoder 𝐸𝑣 and decoder

𝐷𝑣 consist of 𝐾 convolutional layers and 𝐾 deconvolutional layers,

respectively, where each layer (except the first and last layers) is

followed by a ReLU activation function and a batch-normalization

layer [35]. Notably, to minimize the information loss during the

decoding process, inspired by [23], we combine the feature maps of

the decoder and the corresponding ones of the encoder to decode the

try-on template. For simplicity, we temporally omit the subscript 𝑖
of O𝑖 , and thus the encoder and decoder of the visual generator can
be formulated as follows:

𝒉𝐾𝑣 = 𝐸𝑣 (𝒗1, 𝒗2, · · · , 𝒗𝑁 ) :
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝒉1𝑣 = conv(𝒗1, 𝒗2, · · · , 𝒗𝑁 ),
𝒉𝑖𝑣 = bn(conv(ReLU(𝒉𝑖−1𝑣 ))) |𝐾−1𝑖=2 ,

𝒉𝐾𝑣 = conv(ReLU(𝒉𝐾−1𝑣 )),
�̃�𝐾𝑣 = 𝐷𝑣 (𝒉𝐾𝑣 , {𝒉𝑖𝑣}𝐾−1𝑖=1 ) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̃�0𝑣 = ReLU(bn(𝒉𝐾𝑣 )),
�̃�𝑖𝑣 = ReLU( [bn(dconv(�̃�𝑖−1𝑣 )),𝒉𝐾−𝑖+1𝑣 ]) |𝐾−1𝑖=1 ,

�̃�𝐾𝑣 = tanh(dconv(𝒉𝐾−1𝑣 )),

(2)

where ReLU(·), tanh(·), bn(·), conv(·) and dconv(·) refer to

the ReLU activation function, tanh activation function, batch-

normalization layer, convolutional layer and deconvolutional layer,

respectively. The encoder 𝐸𝑣 takes the stacked images {𝒗𝑖 }𝑁𝑖=1 of
fashion items as the input and passes the feature maps of each

layer {𝒉𝑖𝑣}𝐾−1𝑖=1 to the decoder 𝐷𝑣 to generate the final desired try-

on template image. We define the output of the decoder is the

image-based generated try-on template 𝑃𝑣 = �̃�𝐾𝑣 . To regularize

the generated try-on template to imitate the ground truth try-on

image 𝑃 , we adopt the 𝐿1 norm rather than 𝐿2 as 𝐿1 encourages less
blurring [21] for the visual try-on template generator as follows:

L𝑣𝐺 = | |𝑃 − 𝑃𝑣 | |1 . (3)

3.2.2 Textual Generator. Intuitively, the textural generator needs

to fulfill the task of text-to-image translation, by generating the

try-on template image based on the given textual descriptions of

composing fashion items. Similar to many existing efforts [19, 36]

in this research line, we adopt the deconvolutional network

architecture, which consists of an embedding layer and several

deconvolutional layers. One naive approach to train the textural

generator is to employ the ground truth try-on image to super-

vise the training of the deconvolutional network, like the visual

generator. However, due to the wide domain gap between textual

Algorithm 1Multi-modal Try-on Template Generation

Input: The set of positive outfits Ω+.
Output: The generated try-on template 𝑃𝑣 and 𝑃𝑡 .
1: Normalize the pixel array of item image 𝒗𝑖 into [0, 1].

2: Initialize the parameters 𝚯𝐺 of the MTTG.

3: repeat

4: Randomly draw batch of outfits from Ω+.
5: Update the parameters of the MTTG:

𝚯𝑣𝐺 ← 𝚯𝑣𝐺 − 𝜂
𝜕L𝑣

𝐺
𝜕𝚯𝑣

𝐺
,

𝚯𝑡𝐺 ← 𝚯𝑡𝐺 − 𝜂
𝜕L𝑡

𝐺

𝜕𝚯𝑡
𝐺
.

6: until Converge

and visual modalities [37], the generated template image can suffer

from poor quality [38, 39]. Towards this end, we devise a new

scheme for the textual generator by taking into account the latent

consistency between the textual description and visual image of the

same fashion item. In this manner, the goal of the textual generator

is shifted from synthesizing the try-on template image to operating

as the encoder of the visual generator and leaving the template

generation to the decoder of the visual generator.

Instead of directly feeding the stack of text descriptions {𝒕𝑖 }𝑁𝑖=1
of the composing fashion items of the outfit, we introduce the

attention mechanism due to the fact that different words can

contribute differently to synthesizing the try-on template. For

exmaple, “fitted” is more important than “ruffle”, as the former one

indicates the overall shape of the item while the later one just gives

some feature details. Thus, we weight the raw textual information

through a to-be-learned attention vector and, similar to [19], we

transform it into a dense embedding 𝒉0𝑡 with a fully-connected layer
as follows:

𝒉0𝑡 =𝑾1
𝑡 (𝜶 � [𝒕1, 𝒕2, ..., 𝒕𝑁 ]) + 𝒃1𝑡 , (4)

where 𝜶 is the to-be-learned attention vector, whose different

dimension indicates the weight of different word in the different

fashion item. � is the element-wise multiplication between two

vectors. 𝑾1
𝑡 and 𝒃1𝑡 are the parameters of the embedding layer.

Finally, we deploy 𝐾 − 1 deconvolutional layers to decode the latent

embeddings of the textual information, which can be formulated

as follows:

𝒉𝑖𝑡 = dconv(ReLU(𝒉𝑖−1𝑡 )) |𝐾−1𝑖=1 , (5)

where 𝒉𝑖𝑡 indicates the intermediate feature maps of the 𝑖-th
deconvolutional layer.

In order to mimic the work of the encoder in the visual generator,

the deconvolutional network in the textual generator should output

the counterpart of feature maps derived from the encoder in the

visual generator. Accordingly, we define the following objective

function to optimize the textual generator:

L𝑡𝐺 = | |𝒉𝐾𝑣 − (𝑾2
𝑡 𝒉

0
𝑡 + 𝒃2𝑡 ) | |2 +

𝐾−1∑
𝑖=𝑖

| |𝒉𝑖𝑣 − 𝒉𝐾−𝑖𝑡 | |2, (6)

where 𝑾2
𝑡 and 𝒃2𝑡 are transformation parameters to project the

latent textual embedding 𝒉0𝑡 into the visual code 𝒉
𝐾
𝑣 . We choose the

Euclidean norm | | · | |2 to make the two vectors close as the most

studies [1, 5, 31] do.
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Thereafter, once the deconvolutional network has been trained

by minimizing the loss function in Eqn. (6), the textual generator

can output the try-on template image 𝑃𝑡 with the help of the visual

decoder 𝐷𝑣 as follows:

𝑃𝑡 = 𝐷𝑣 ((𝑾2
𝑡 𝒉

0
𝑡 + 𝒃2𝑡 ), {𝒉𝑖𝑡 }𝐾−1𝑖=1 ). (7)

Ultimately, we reach the final loss function for the multi-modal

try-on template generator:

L𝐺 = L𝑣𝐺 + L𝑡𝐺 . (8)

Note that the textual generator works on mimicking the encoder

of the visual generator, thereafter, their parameters are optimized

independently. The detailed training process of the proposed multi-

modal try-on template generator is summarized in Algorithm 1.

3.3 Discrete Item Interaction Modeling

Similar to existing efforts [1, 8], wemodel the outfit compatibility by

uncovering the latent interaction among discrete composing items.

Due to the fact that outfits can have different number of fashion

items, it is intractable to take the pair-wise scheme that works on

evaluating the compatibility between two items, e.g., the top and

bottom. We thus resort to the list-wise manner, where each outfit

can be treated as a sequence of fashion items with unfixed length.

Due to the remarkable success of the bi-directional LSTM [2] in the

comprehensive sequence dependency modeling, we involve it for

uncovering the latent interaction reside in the well-matched outfits.

In particular, we first extract the latent visual feature 𝒗𝑖 from the

image of an item through a pre-trained CNN network and then feed

it into the bi-directional LSTM. Here, we take the forward LSTM

as an example , while the backward LSTM can be defined similarly.

The forward LSTM recurrently takes a visual feature 𝒗𝑖 as the input
and outputs a hidden state 𝒉𝑖

𝑑
from 𝑖 = 1 to 𝑖 = 𝑁 as follows:

𝒉𝑖𝑑 = LSTM(𝒗𝑖 ), 𝑖 = 1, 2, ..., 𝑁 . (9)

Similarly, the backward LSTM takes the visual feature in a

reverse order and maps it to backward output �̃�𝑖
𝑑
. In our context of

discrete item interaction modeling, following [2], we maximize the

probability of the next item in the outfit given the previous ones

in the dual directions to uncover the latent interaction reside in

outfits. Accordingly, we have the following loss function for the

discrete item interaction modeling:

L𝑑 = − 1

𝑁

𝑁∑
𝑖=1

log(
exp(𝒉𝑖

𝑑
𝒗𝑖+1)∑

�̂�∈V̂ exp(𝒉𝑖
𝑑
𝒗) )

− 1

𝑁

0∑
𝑖=𝑁−1

log(
exp(�̃�𝑖+1

𝑑
𝒗𝑖 )∑

�̂�∈V̂ exp(�̃�𝑖+1
𝑑

𝒗)
),

(10)

where these two terms of loss denote the probability of the predic-

tion in the forward and backward LSTM, respectively. V̂ contains

all images of the current batch.

3.4 TryOn-CM

As aforementioned, fashion items have occlusion and deformation

when they are put on a person to make a real outfit, which is hard

to be modeled by simply modeling items in the discrete manner.

Towards this end, we incorporate the try-on appearance to enhance

Algorithm 2 Multi-modal Try-on-guided Compatibility Modeling

Input: The training set Ω.
Output: The parameters 𝚯 of the TryOn-CM.

1: (a) Normalize the pixel array of item image 𝒗𝑖 into [0, 1],

(b) Derive 𝒗𝑖 from a pre-trained CNN model.

2: Initialize the parameters 𝚯 of the TryOn-CM.

3: repeat

4: Randomly draw a batch of outfits from Ω.
5: (a) CalculateL𝐺 andL𝑑 with all positive outfits of the batch,

(b) Calculate L𝑠 with the batch of outfits.

6: Update the parameters of the TryOn-CM:

𝚯← 𝚯 − 𝜂 𝜕L𝜕𝚯 .

7: until Converge

the compatibility modeling of complementary fashion items in a

combined manner.

Inspired by the work [40] that utilizes different dense feature to

represent different view of the object, in this work, we similarly

adopt different features to represent the fashion compatibility

of different manners, i.e., the discrete and combined manners.

Intuitively, towards the discrete compatibility modeling, we adopt

the output of the last time step of the forward LSTM, i.e., 𝒉𝑁
𝑑
, which

encodes the latent dependency of the whole sequence of discrete

fashion items in the outfit, as an indicator of the outfit compatibility

from the discrete interaction perspective. To incorporate the try-on

appearance in the compatibility modeling, one naive approach is

to employ an extra CNN-based network to extract the features of

the generated try-on template images, which can be fused with

𝒉𝑁
𝑑
. However, in this manner, the extra network would lead to

the performance degradation [41] by deepening the depth of the

network. Therefore, we resort to the intermediate outputs of the

MTTG, i.e., 𝒉𝐾𝑣 and 𝒉0𝑡 , as the references of the try-on appearance.

Accordingly, we comprehensively measure the compatibility score

for the outfit with a fully-connected layer as follows:

𝑠 = 𝜎 (𝑾𝑠 ( [𝒉𝑁𝑑 ,𝒉𝐾𝑣 ,𝒉0𝑡 ]) + 𝒃𝑠 ), (11)

where𝑾𝑠 and 𝒃𝑠 are the layer parameters. 𝜎 is the sigmoid function

for scaling the outfit compatibility score to [0, 1].

Similar to [24], we cast the compatibility modeling as a binary

classification problem and hence utilize the cross entropy loss

function to learn the parameters 𝚯 of the proposed scheme.

Formally, we have:

L𝑠 = −𝑦 log(𝑠) − (1 − 𝑦) log(1 − 𝑠), (12)

where 𝑦 is the ground truth label of the outfit.

Optimization. Ultimately, based on our constructed training

set Ω = Ω+ ∪ Ω−, our final objective function of the proposed

TryOn-CM scheme can be defined as follows:

min
Θ

L =
∑
Ω+

(L𝐺 + L𝑑 ) +
∑
Ω

L𝑠 . (13)

Notably, L𝐺 is optimized with only the set of positive outfits

Ω+ rather than the whole training set because the try-on image

of the negative outfit is not available. Meanwhile, as mentioned in

Subsection 3.3, the bi-directional LSTM is designed to uncovering

the latent interaction reside in thewell-matched outfits, we also only
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Figure 4: Outfit examples in FOTOS dataset.

utilize Ω+ to optimize L𝑑 . To give a clear illustration of the training

process of the proposed multi-modal try-on-guided compatibility

modeling, we summarize the training process in Algorithm 2.

4 FOTOS DATASET

Although several fashion datasets have beenmade publicly available

towards the fashion compatibility modeling, such as FashionVC [1]

and Polyvore dataset [2], all of them can only support the discrete

item interaction modeling but not the try-on appearance modeling

as they lack the try-on ground truth image. To bridge this gap and

facilitate the multi-modal try-on-guided compatibility modeling

research, we constructed a dataset, named FOTOS, based upon the

online fashion-oriented community website SSENSE. In particular,

we first collected a seed set of popular fashion items on SSENSE.

Then by tracking the “STYLED WITH” section of each seed

item’s profile, we can obtain the outfit composition, i.e., the set

of complementary fashion items, while the ground truth try-on

image for this outfit can be found in any item’s display page. Some

outfit examples are listed in Figure 4.

In order to guarantee the quality of our dataset, we screened

out the duplicated outfits as well as those comprising a only single

piece of item. The final dataset consists of 11, 000 outfits with 20, 318
fashion items. For each item, we crawled its product image, title

and description. As fine-grained categories provided by the website

are non-standard, such as “Fur & Shearling” and “V-Necks”, we

resorted to the last word of the item title that reveals the fine-

grained category of the item, e.g., the t-shirt, blouse and hoodie, to

derive the item category. For preprocessing, we merged the same

meaning words, e.g., jean and jeans, and standardized the word

spelling, e.g., skort to skirt. And finally, we derived 141 fine-grained

categories. Considering that the clothing items contribute greater

to the outfit compatibility than other items, such as shoes and

sunglasses, we further divided the fashion items into the clothing

items and others. The statistics of our dataset is listed in Table 1,

where the total and average indicate the total number of items in the

dataset and the average number of items in an outfit, respectively.

5 EXPERIMENTS

To evaluate our proposed method, we conducted extensive experi-

ments on FOTOS by answering the following research questions:

Table 1: Statistics of the FOTOS dataset.

Category
Item Number

Total Average

Clothing

blazer, parka, jacket, coat,

13,348 2.57
t-shirt, blouse, shirt, polo,

sweatshirt, trousers, skirt,

gown, bodysuit, ... (55)

Other

oxfords, sneakers, loafers,

6,970 1.45sunglasses, gloves, satchel,

briefs, bracelet, ... (86)

Total ..., (141) 20,318 4.05

• RQ1: Does our TryOn-CM outperform the state-of-the-arts?

• RQ2: How about the try-on template generation ability of

the proposed MTTG?

• RQ3: Does and how does the try-on template help the outfit

compatibility modeling?

5.1 Experimental Settings

In this subsection, we first detailed the feature extraction of the

visual and textual information in Subsection 5.1.1. And then, the

process of building the training set is introduced in Subsection 5.1.2
followed by the scheme structure description in Subsection 5.1.3.

5.1.1 Feature Extraction. In this work, we utilized the advanced

deep convolutional neural networks, which have been proven

to be the state-of-the-art methods for the image representation

learning [42, 43]. In particular, we chose the pre-trained Con-

vNet [44], which consists of 16 convolutional layers followed by

3 fully connected layers. We used the output of the second fully

connected layer, a 4096D vector, as the visual feature 𝒗𝑖 of an item.

For the text description 𝒕𝑖 of the fashion items, we employed the

bag-of-words method [45] for its simplicity and robust performance.

Analogous to [46], we first constructed an attribute vocabulary

based on the words of item titles. We filtered out the low-frequency

words of the text since they tend to be the noise. As for the FOTOS

dataset, we empirically found that setting the filtered threshold

to 40 (i.e., removing attributes whose frequency is less than 40)

can deliver an appropriate vocabulary with size of 256, retaining

few noisy words but relatively adequate attributes to describe the

fashion item. Accordingly, each fashion item can be represented as

a 256D boolean vector, where each element indicates whether the

corresponding word is in the item textual description.

5.1.2 Training Set Processing. In a sense, our FOTOS dataset only

comprises positive outfits. As to build the training set Ω, we need
to compose the set of negative outfits Ω− artificially. In particular,

instead of composing negative outfits from scratch, we randomly

replaced one item of the positive outfit with another item of the

same clothing category. Notably, considering that most outfits

comprise less than 5 fashion items, we set the maximum number of

items in an outfit as 4. In case that the outfit comprises less than 4

items, we will pad zeros at the end. In addition, we unified the size

of fashion item images to 256 × 256.

5.1.3 Scheme Structures. The layer number 𝐾 of the visual genera-

tor of MTTG is set to 8. The kernel size and stride of the filter in
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Table 2: Performance comparison among baselines. † and ‡
denote the statistical significance for 𝑝 value < 0.05 and 𝑝
value < 0.01, respectively, compared to the best baseline.

AUC MRR HR@1 HR@10 HR@100 HR@200

RAND 0.502 0.014 0.002 0.020 0.204 0.403

POP 0.496 0.016 0.006 0.024 0.221 0.447

NCR 0.646 0.034 0.012 0.064 0.376 0.616

BPR-DAE 0.742 0.087 0.046 0.165 0.552 0.741

PAICM 0.692 0.057 0.024 0.110 0.468 0.662

LSTM-VSE 0.794 0.118 0.065 0.226 0.642 0.809

TryOn-CM 0.832‡ 0.134† 0.061 0.290‡ 0.721‡ 0.852‡

each layer are set to 5 and 2, respectively. As for the encoder 𝐸𝑣 ,
the number of filters for each convolutional layer is set to 64, 128,

256, 512, 512, 512, 512 and 512, respectively, leading the output 𝒉𝐾𝑣
with size of 1×1×512. Regarding the decoder, the number of filters

for 𝐷𝑣 is 512, 512, 512, 512, 256, 128, 64 and 3, respectively. As to

the textual generator, the textual information of the outfit is first

transformed to its 512D embedding 𝒉0
𝑑
with a fully-connected layer

according to Eqn.(4). The rest structure of the textual generator is

the same with the first 7 deconvolutional layers of 𝐷𝑣 .
For the discrete item interaction modeling, we first mapped the

visual feature 𝒗𝑖 into a 512D vector with a fully connected layer

and then fed it into the bi-directional LSTM network. The number

of hidden units of the LSTM is set to 512.

Pertaining to the multi-modal try-on-guided compatibility mod-

eling, we mapped all the compatibility indicators, i.e., 𝒉𝑁
𝑑
, 𝒉𝐾𝑣 and

𝒉0𝑡 , to 128D vectors with respective fully connected layers in order

to enhance the ability of the model in dealing with the complex

fashion compatibility.

5.2 On Model Comparison (RQ1)

We evaluated the performance on top-n recommendation tasks [47].

For each testing outfit, we randomly picked one composing clothing

item as the ground truth item and randomly sampled additional

499 fashion items in the same category with the ground truth item

as the candidate items. All candidate items are ranked based on

their compatibility scores derived in Eqn. (11), and we adopted the

Mean Reciprocal Ranking (MRR) and Hit Rate (HR) at 1, 10, 100,

and 200 to assess the complementary item retrieval performance.

Meanwhile, we adopted the Area Under Curve (AUC) as another

metric to verify the positive/negative outfit classification capability

of the model. To prove the effectiveness of the proposed TryOn-CM,

we chose the following baselines:

• RAND. We randomly ranked the candidate items for the

query fashion items.

• POP. We ranked the candidate items directly based on its

popularity, which is defined as the the number of occurrences

of the item in the dataset.

• BPR-DAE.We selected the content-based neural scheme [1],

which models the coherent relation between different modal-

ities of fashion items via a dual auto-encoder network.

• LSTM-VSE. According to [2], we used a bidirectional LSTM

to uncover the latent discrete item interaction and the visual-

semantic space to inject attribute and category information

0.6

0.65

0.7

0.75

0.8

0.85

BPR-DAE PAJCM NCR LSTM-VSE TryOn-CM

2-items 3-items 4-items

Figure 5: Results of the number test, which is used to

evaluate the ability of different methods to handle the

outfits with different numbers of fashion items.

as a regularization for training the LSTM. We chose the loss

of the bi-directional LSTM as an indicator of the outfit score.

• PAICM. The method [31] involves matrix factorization to

learn some compatible and incompatible prototypes, which

can be used to guide the outfit compatibility modeling.

• NCR. This work [32] makes full use of the textual informa-

tion of fashion items and models the outfit compatibility

from the semantic and lexical aspects.

It is worth noting that BPR-DAE and PAICM are designed for

analyzing the fashion compatibility between item pairs (e.g., the

top-bottom pair). To fit themwith the context of outfit compatibility

modeling that involves more than two items, we divided items in

FOTOS into two groups: tops and bottoms, according to their fine-

grained categories. And then, we used the average compatibility

score of top-bottom pairs as the outfit compatibility. For example,

suppose there is a jacket, shirt and skirt in an outfit. Then the

fashion compatibility is measured as the average compatibility of

the jacket-skirt pair and the shirt-skirt pair.

Table 2 shows the performance comparison among different

approaches. Overall, TryOn-CM achieves the best performance

with respect to almost all evaluation metrics, demonstrating the

superiority of the proposed method over these baselines. Compared

with the naive methods (i.e., POP and RAND), NCR promotes the

performance by fully exploring the textual information of items.

However, the neglect of the visual appearance, which is also the

valuable cue for the compatibility modeling, makes it inferior to

the methods that utilize the multi-modal data (i.e., BPR-DAE, Bi-

LSTM). Besides, the pair-wise methods (i.e., BPR-DAE, PAICM)

present worse performance than the list-wise methods (e.g., Bi-

LSTM, TryOn-CM). One of the possible reasons is that the pair-wise

methods are designed to cope with top-bottom pairs, therefore,

they are not suitable for handling outfits with multiple items.

However, the list-wise methods are designed for a list of items,

which performs better in outfits with multiple items.

To gain a thorough understanding of the aforementioned pair-

wise methods and list-wise methods fit for the outfits with different

item numbers, we further involved an extra evaluation, named

“number test”. In particular, we divided our dataset into 3 parts: the

outfits with 1) two items, 2) three items and 3) four items. Without

loss of generality, we listed the performance of different methods

with respect to AUC in Figure 5. From the figure we can see that

BPR-DAE performs better for outfits with two items as compared to

those with multiple (i.e., 3 and 4) ones, indicating its superiority in
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t1: Indigo Denim Jacket
t2: White Tulle Tank Top
t3: Blue Wide Denim Jeans

t1: Black Wool Oversized Coat
t2: Off- White  Cardigan
t3: Indigo Jeans

t1: Red Denim Fitted Jacket
t2: White Crewneck T-shirt
t3: Black Stripe Track Pants

t1: Black Jersey
t2: Grey Tie Crop Jeans

t1: Blue Cashmere Sweater
t2: Black Skinny Jeans

t1: Red Sweater
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t1: BeigeCashmere Turtleneck
t2: Black Trousers

t1: Grey Black Blazer
t2: White Poplin Shirt
t3: Black Shorts

P P P P P P P P P

t1: Black Ribbed T-shirt
t2: Blue High-rise Jeans

Outfit OutfitOutfit

Figure 6: Examples of the multi-modal try-on template generation. 𝑃𝑣 and 𝑃𝑡 are the generated templates from the visual and

textual modality, respectively. 𝑃𝑡 is the template generated by the naive text-to-image method.

the pair-wise compatibility modeling. In addition, PAICM narrows

this gap probably because that it measures the outfit compatibility

by the auxiliary compatible and incompatible prototypes in stead of

the merely item interaction. The list-wise methods consistently do

better on outfits withmultiple itemswhile worse on outfits with two

items. Therefore, we concluded that the pair-wise methods work

better on the outfits with two items while the list-wise methods

perform well with multiple items. Besides, we found that BPR-DAE

and TryOn-CM achieve comparable performance while dealing

with the outfits with two items (i.e., BPR-DAE: 0.767 and TryOn-

CM: 0.760). This may be because that outfits with two items has less

occlusion or deformation when tried on. Therefore, the benefit of

incorporating the try-on appearance modeling in the compatibility

modeling for outfits with only two items is rather limited.

5.3 On Qualitative Analysis (RQ2)

To intuitively show the try-on template generation ability of MTTG,

we visualized some examples in Figure 6. The visual and textual

information of the outfit are listed in the column “Outfit”. The

try-on template generated by the visual and textual modality are

displayed in the columns “𝑃𝑣” and “𝑃𝑡 ”, respectively, while the real
try-on image is shown in the column “𝑃”. In addition, we marked

the contribution of different words by shading the color, where a

darker color indicates a greater contribution.

From the figure we can see, both 𝑃𝑣 and 𝑃𝑡 are representative
for the real try-on image. In particular, 𝑃𝑣 is closer to the real try-

on appearance probably because the image of the fashion item

brings more information than its textual description. For example,

as for the outfit in the lower right of the figure, the text “Black

Jersey” of the fashion item cannot cover the wide-collar attribute

of the item delivered by its image. Consequently, 𝑃𝑣 successfully
synthesizes this feature while 𝑃𝑡 fails. Pertaining to the outfit in

the mid-top, the textual generator mainly focuses on the “Black”

of the outer and generates the wrong color for 𝑃𝑡 . Besides, during
the template generation, we found that the color and category play

more important roles than other attributes, for example, as for the

outfit in the mid bottom, the “Red”, “Blue” and “Jeans” take the

bigger weights than “High-rise” and “Wide-leg”. The reason may

be that they represent the main features of fashion items, while

other words describe the trivial details.

Besides, to validate the effectiveness of our proposed textual

generator in bridging the domain gap between textual and visual

modalities, we compared the try-on templates generated by our

MTTG and the naive text-to-image method, which directly employs

the ground truth image to supervise the textual try-on template

generator. As we can see from Figure 6, the templates generated

by the naive method (see the column 𝑃𝑡 ) suffer from either the

poor image quality or the low consistence with the real try-

on appearance. This proves that our proposed textual generator

successfully narrows the domain gap between textual and visual

modalities and generates images with the higher quality.

5.4 On Ablation Study (RQ3)

To evaluate the importance of the try-on appearance in the

compatibility modeling, we further compared TryOn-CM with its

derivation: the discrete compatibility modeling (DCM), which can

be effortlessly derived by removing L𝐺 from the loss function

in Eqn. (13). Moreover, to obtain a thorough understanding, we

conducted the comparative experiments with different modality

configurations: VCM and TCM, which adopt the try-on template

generated by the only visual and textual information, respectively.

In particular, VCM and TCM can be obtained by changing the outfit

representation to [𝒉𝑁 ,𝒉𝐾𝑣 ] and [𝒉𝑁 ,𝒉0𝑡 ] in Eqn. (11), respectively.

Furthermore, we conducted an extra experiment on the comparison

of the proposed textual generator and the normal text-to-image

method, named orig-TCM that optimizes the textual generator via

the ground truth image. We extracted the �̂�0𝑡 , which corresponds to

𝒉0𝑡 , as the compatibility indicator to form the outfit representation

[𝒉𝑁 , �̂�0𝑡 ]. Note that all the derivations are retrained from scratch.

Table 3 shows the results of the ablation study, where “V” and

“T” indicate the visual and textual modality, respectively. From

the table, we can see that our model consistently surpasses all

methods across all metrics, which verifies the effectiveness of our

proposed method. In particular, both VCM and TCM exceed DCM

in varying degrees, suggesting that it is necessary to consider the

try-on appearance during the outfit compatibility modeling. More
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Table 3: Results of the ablation study. Each method is ticked with its involved components, where “DCM”, “V” and “T”

correspond to the discrete compatibility modeling, the try-on template from the visual and textual information, respectively.

DCM V T AUC MRR HR@1 HR@10 HR@100 HR@200

DCM
√

0.816 0.118 0.059 0.237 0.687 0.843

orig-TCM
√ √

0.812 0.110 0.055 0.220 0.678 0.835

TCM
√ √

0.821 0.120 0.060 0.240 0.697 0.845

VCM
√ √

0.824 0.123 0.061 0.244 0.706 0.846

TryOn-CM
√ √ √

0.832 0.134 0.061 0.290 0.721 0.852
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Figure 7: Ranking results of the discrete compatibility modeling (DCM) and our multi-modal try-on-guided compatibility

modeling. The positive complementary item of the query is circled in the green box and we visualize the try-on template of

the outfit generated by the try-on template generator in the last line.

specifically, VCM slightly outperforms TCM which implies that the

visual information plays a more important role than the textual

information in the try-on template generation. Finally, we found the

orig-TCM performs the worst, even worse than the pure discrete

interaction modeling method DCM. One reason may be that this

method cannot fully bridge the wide gap between the visual and

textual modality and hence fail to generate the proper template

(see the column 𝑃𝑡 ) directly with the text generator supervised by

the ground truth image. Moreover, the misleading try-on templates

generated by orig-TCM degrade the performance of the discrete

item interaction modeling.

To have a deep understanding of how the try-on template

help the compatibility modeling, we compare the ranking results

between DCM and the proposed TryOn-CM in Figure 7. Without

loss of generality, we only select 10 candidates to rank for the

query, including one positive item and 9 negative items. Towards

the more intuitive illustration, we also visualized the synthesized

try-on template of each candidate item paired up with the query

items at the last row of the Figure 7. As we can see, benefited from

the synthesized try-on templates, our proposed TryOn-CM ranked

the positive complementary item (circled by the green box) higher

than the discrete item interaction modeling.

6 CONCLUSION AND FUTUREWORK

Fashion items often present occlusion and deformation when

they are tried on, which complicates the challenge of the fashion

compatibility modeling merely with the discrete item interaction

modeling. In this work, we take into account the try-on appear-

ance of the outfit into the discrete item interaction modeling to

comprehensively analyze the compatibility from both discrete and

combined manners. In particular, we propose a multi-model try-

on-guided compatibility modeling scheme that first generates the

try-on template of an outfit and then combines it with the discrete

item interaction to model the outfit compatibility. To evaluate the

proposed method, we construct a new dataset from the fashion

website SSENSE, consisting of 11,000 well-matched outfits and

their corresponding try-on images. Extensive experiments have

been conducted over our newly collected dataset, and verified

the necessity of considering the try-on appearance during the

outfit compatibility modeling. In addition, we find that the visual

information of fashion items brings more details than the textual

information during the try-on template generation.

However, the try-on template generated by MTTG is vague

and loses certain details compared with the real try-on image.

Therefore, in the future, we plan to devise a more robust generator

to synthesize the try-on template and model the outfit compatibility

directly based on it. Besides, as the personalized factors, such as the

personal identity and body shape, also play the important role in

the fashion analysis, we plan to take them into the try-on template

generation and synthesize a personalized template.
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