
Generative Attribute Manipulation Scheme for Flexible
Fashion Search

Xin Yang†, Xuemeng Song†, Xianjing Han†, Haokun Wen†, Jie Nie§, Liqiang Nie†
†Shandong University, Shandong, China, §Ocean University of China, Shandong, China

{joeyangbuer,sxmustc,hanxianjing2018,whenhaokun}@gmail.com,niejie@ouc.edu.cn,nieliqiang@gmail.com

ABSTRACT

In this work, we aim to investigate the practical task of flexible
fashion searchwith attributemanipulation, where users can retrieve
the target fashion items by replacing the unwanted attributes of
an available query image with the desired ones (e.g., changing the
collar attribute from v-neck to round). Although several pioneer
efforts have been dedicated to fulfilling the task, they mainly
ignore the potential of generative models in enhancing the visual
understanding of target fashion items. To this end, we propose
an end-to-end generative attribute manipulation scheme, which
consists of a generator and a discriminator. The generator works on
producing the prototype image that meets the user’s requirement of
attribute manipulation over the query image with the regularization
of visual-semantic consistency and pixel-wise consistency. Besides,
the discriminator aims to jointly fulfill the semantic learning
towards correct attribute manipulation and adversarial metric
learning for fashion search. Pertaining to the adversarial metric
learning, we provide two general paradigms: the pair-based scheme
and the triplet-based scheme, where the fake generated prototype
images that closely resemble the ground truth images of target
items are incorporated as hard negative samples to boost the model
performance. Extensive experiments on two real-world datasets
verify the effectiveness of our scheme.
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Figure 1: Illustration of the fashion search with attribute

manipulation.

1 INTRODUCTION

With the prosperity of online clothing market, the Internet has
accumulated numerous clothing data, making people overwhelmed
and rather troublesome to search the ideal fashion items. Towards
this end, content-based fashion search [18, 20, 28] that allows users
to simply upload the query images to retrieve desired fashion
items, has been a hot research topic in the multimedia retrieval
domain [15, 16, 26, 27]. Nevertheless, in real-world scenarios, the
user may not be satisfied with all attributes of the available query
image. Namely, to get the desired fashion item, the user needs
to modify certain attributes of the query image, i.e., replacing the
unwished attribute(s) with the desired one(s). For example, as shown
in Figure 1, the user prefers to get a fashion item like the query
item but with black color and long sleeve instead of the original red
color and short sleeve. In this context, the traditional content-based
fashion search cannot be directly applied to satisfy the user’s needs.
In fact, several pioneer efforts have been made on the practical

problem of content-based fashion search with attribute manipu-
lation, which can be broadly classified into two groups, i.e., the
fusion-based [11, 42] and substitution-based [1] methods. The former
ones aim to learn the latent representation of the target item by
directly fusing the visual features of the query image and the
semantic features of wanted attribute(s) with advanced neural
networks. Their key limitation is to neglect the long-standing
semantic gap [40] between the low-level visual clues and high-level
attribute semantics, making the learned latent representation fail
to effectively describe the target item. Differently, the substitu-
tion-based methods directly characterize the query image with
multiple attributes, and the attributemanipulation can be conducted
by replacing the unwished attribute features with desired ones.
Although these efforts have achieved promising results, they
overlook the potential of generative models in enhancing the visual
understanding of the target item [24, 25]. Thus, in this work, we
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aim to boost the performance of content-based fashion search with
attribute manipulation by directly generating the target item image.

As a matter of fact, Generative Adversarial Networks (GANs) [9]
have shown compelling success in various image generation
tasks, such as the image translation [19, 30] and text-to-image
synthesis [31, 39]. Therefore, we adopt the GAN as the model
backbone to synthesize a prototype image conditioning on the
given query image and the user’s attribute manipulation. This
can enhance the aesthetic feature learning of the target fashion
item and further facilitate the fashion search. However, fulfilling
our proposed task by means of the GAN may encounter the
following research challenges. 1) Apparently, the optimal search
performance cannot be achieved by the naive concatenation of
the training processes of the prototype image generation and
fashion search. Therefore, how to seamlessly combine them in
a unified end-to-end manner, and meanwhile make them mutually
reinforce each other to boost the performance constitute a tough
challenge. 2) In a sense, as the visual image and the semantic
attributes characterize the same fashion item, they should share
certain latent features of the item. Accordingly, how to model
this visual-semantic consistency in the context of fashion search
with attribute manipulation poses another challenge for us. And
3) the ideal generated prototype image should satisfy all the user’s
requirements of attribute manipulation, and closely resemble the
ground truth image of the target item. Thus, how to take into
account the generated prototype images to learn a robust distance
metric for the fashion search is also a crucial challenge.
To address the aforementioned challenges, we present a gen-

erative attribute manipulation scheme, dubbed as AMGAN, for
flexible fashion search. As shown in Figure 2, AMGAN seamlessly
integrates the prototype image generation and the target fashion
item search within a unified model. In particular, it consists of
two key components: a generator G and a discriminator D. The
generator works on producing a prototype image that meets
the user’s requirement of attribute manipulation over the query
image, which is regularized by the visual-semantic consistency
and pixel-wise consistency. Instead of the simple real/fake image
judging like traditional GANs, the discriminator is devised for
the metric learning for fashion search from two perspectives:
the semantic discriminative learning and the adversarial metric
learning. Specifically, towards the former one, we introduce a set
of attribute learners to ensure the generated prototype image to
present the desired attribute semantics. Regarding the adversarial
metric learning, we introduce two adversarial metric learning
paradigms: the pair-based scheme and the triplet-based scheme.
Motivated by the fact that the generated prototype images are
fake but highly similar to the ground truth images of target
items, we incorporate them as the hard negative samples [7,
32, 33] to learn more robust distance metrics. Ultimately, the
prototype image generation and metric learning for fashion search
can be jointly trained by playing an adversarial game. In this
game, the discriminator attempts to identify the correct attribute
manipulation, and meanwhile distinguish the positive and negative
examples (including the generated hard negative ones) by learning
a robust distance metric. Nevertheless, the generator makes great
efforts to synthesize the prototype image that imitates the ground
truth image and fool the learned distance metric.

The main contributions of this paper are summarized as follows:
• To our best knowledge, we are the first to adopt GANs to
enhance the visual understanding in fashion search with attribute
manipulation, where the generated prototype image is employed
to guide the metric learning for fashion search.

• We seamlessly integrate the prototype image generation and
metric learning for fashion search in an end-to-end network.
In particular, the discriminator is devised to jointly fulfil the
semantic discriminative learning towards the correct attribute
manipulation and adversarial metric learning for fashion search.

• We incorporate the generated prototype images as hard negative
examples to boost the performance, and accordingly present
two novel adversarial metric learning paradigms, which adopt
the pair-based and triplet-based training policy, respectively.
Extensive experiments on two real-world datasets validate the
superiority of our model. As a byproduct, we release the codes
to benefit other researchers1.

The rest of the paper is organized as follows. Section 2 briefly
reviews the related work. Section 3 details the proposed AMGAN.
Experimental results and comprehensive analyses are presented in
Section 4, followed by the conclusion and future work in Section 5.

2 RELATEDWORK

2.1 Attribute Manipulation for Fashion Search

In recent years, there has been growing interest in the fashion
search with attribute manipulation due to the practical demands
and huge potential benefits. For example, WhittleSearch [21] allows
the user to upload a query image and a text description representing
the relative attribute (e.g.,more “brighter” color) to tune the specific
attribute of the item to meet the user’s demand. To achieve more
direct attribute manipulation, Zhou et al. [45] employed a hybrid
topic model [3, 37] to capture the intricate attribute semantics,
and fulfill the demand-adaptive retrieval according to the user’s
specific requirement. AMNet [42] resorts to the memory block to
record the template representations of various attributes. Then
the wished attribute template representation can be integrated
into the query image representation to search the desired fashion
item. In addition, FashionSearchNet [1] characterizes a fashion
item by the concatenation of multiple attribute features extracted
from associated regions. Hence, it can directly replace the specific
attribute features according to the user’s needs to conduct the
flexible search. Overall, the existing efforts dedicated to conducting
attribute manipulation are mainly from the feature-level, ignoring
the intuitive visual signals of the target item. In this work, we lean
upon the GAN to synthesize a prototype image conditioning on the
given query image and user’s attribute manipulation intention to
enhance the visual understanding of the desired item and facilitate
the fashion search.

2.2 Generative Adversarial Networks

GANs have achieved remarkable success in various generation
tasks of the fashion domain, ranging from clothing try-on [12, 43]
to fashion design [5, 22]. For example, Zheng et al. [43] proposed a
pose-guided virtual try-on scheme with the cycle-based GAN [46],

1https://joeyangbuer.wixsite.com/amgan.
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Figure 2: Illustration of the proposed AMGAN, consisting of two core parts: a generator for synthesizing prototype image and

a discriminator for the semantic discriminative learning and the adversarial metric learning.

which is able to render a try-on image given a clothing item and
an arbitrary pose. Cui et al. [5] allowed users to input a desired
fashion sketch and a specified fabric image to generate impressive
garment images for fashion design. Moreover, GANs have also
harvested striking success in dealing with the information retrieval
task [41]. Particularly, Liang [23] proposed an unsupervised seman-
tic minimax two-player game by extending the GAN to address
the expert retrieval task. Wang et al. [36] resorted to the GAN
to unify the generative retrieval model and the discriminative
retrieval model for improving the web search and recommendation
applications. Distinguished from these studies that solely focus on
the image generation or the information retrieval, we integrate the
image generation and retrieval process in a consolidated GAN to
figure out the fashion search with attribute manipulation task. In
our model, the generator aims at the prototype image synthesis,
while the discriminator dedicates to justifying the correct attribute
manipulation as well as enhancing the metric learning for fashion
search. Moreover, we make them mutually reinforce each other to
boost the model performance.

3 METHODOLOGY

In this section, we first formally define the research task, and
then detail our proposed model.

3.1 Problem Formulation

In the real-world content-based fashion search scenario, the exact
query image that meets all the user’s requirements can be hard
to obtain. It is more likely that the user has an almost ideal query
image, which can turn to be the ideal one with certain attribute
manipulation to help retrieve the ideal fashion item. In light of
this, in this work, we focus on studying the problem of essential
attribute manipulation for flexible fashion search.

Formally, suppose we have a predefined set of attributes (e.g.,
category and color) A = {am }Mm=1, where am is them-th attribute
and M is the total number of attributes. Each attribute am is
associated with a set of possible values Em = {e1m , e

2
m , · · · , e

Jm
m },

where e jm denotes the j-th value of the attribute am , and Jm is the
total number of possible values regarding am . For simplicity, we
compile all Em in order and hence acquire a unified set of attribute
values E =

⋃M
m=1 Em = {e1, e2, · · · , e J }, where J =

∑M
m=1 Jm .

Accordingly, each image can be characterized by J attribute value
labels. Meanwhile, we have a set of fashion query pairs Q =

{(xi , hi )}
Nq

i=1, where Nq is the total number of query pairs, xi is the

i-th query image, and hi = [h1i ,h
2
i , · · · ,h

J
i ]
T ∈ {0, 1} J is a binary

vector, indicating the user’s attribute manipulation over query
image xi . For example, if a user merely wants to modify the color
attribute of xi into red while maintaining all the rest attributes of xi ,

then he/she can set hi as a vector with all zeros except that hji = 1,

where j is the index of the entry e j that represents the attribute value
red. In addition, each query image xi is associated with a binary

vector of attribute labels, i.e., fi = [f 1i , f
2
i , · · · , f

J
i ]

T ∈ {0, 1} J ,

where f ji = 1 means that the query image xi possesses the attribute

value e j , and 0 otherwise.
Besides, we have a set of gallery images Y, and for each query

pair (xi , hi ), we sample one ground truth image yi ∈ Y which
exactly meets all the user’s requirements. In a sense, we can

construct the triplet training set T = {(xi , hi ,yi )}
Nq

i=1. In this work,
we aim to deal with the fashion search with attribute manipulation
on the basis of the GAN. The generator (G) works on synthesizing
the ideal prototype fashion image x̃i for each input pair (xi , hi ).
The discriminator (D) is devised to learn a distance metric d(·, ·),
based on which we can generate a ranking list of gallery images
from Y for each query pair (xi , hi ).
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Figure 3: Details of the generator and the discriminator inAMGAN,wherek represents the kernel size,n represents the number

of channels, s denotes the stride, and p refers to the padding.

3.2 Prototype Image Generation

In our context, to synthesize the prototype fashion image that sat-
isfies the user’s preference of attribute manipulation over the query
image, we naturally adopt the conditional GAN framework [13].
As shown in Figure 3, we generate a prototype image conditioning
on both the given query image and the attribute manipulation
indicator with an encoder-decoder architecture. In particular, as for
the original visual signal of the query image xi , we encode it into
visual feature maps Fxi ∈ R

W ×H×L with several convolution layers
followed by the Batch-Normalized (BN) and ReLU layer. Symbols
W and H are the width and height of the output feature maps,
respectively, and L is the number of channels.
Pertaining to the attribute manipulation indicator hi , to fully

explore its latent semantic cues, we introduce an attribute semantic
embedding matrix Wa ∈ RL×J , where J is the total number of
attribute values, and L denotes the embedding dimension. Each
column of Wa represents the embedding of an attribute value.
Accordingly, we can obtain the attribute semantic representation
of hi as follows,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hi =
hi∑J
j=1 h

j
i

,

ĥi =Wahi ,

(1)

where hi is the normalized attribute manipulation indicator and ĥi
is the corresponding attribute semantic representation.
To seamlessly fuse both visual feature maps and the attribute

semantic representation, similar to [6, 39], we replicate ĥi to form
the semantic feature maps Fhi ∈ RW ×H×L with the same shape
of visual feature maps Fxi . Thereafter, we concatenate Fxi and Fhi
into the fusion feature maps Fi = [Fxi ; Fhi ], and then transform Fi
by several residual blocks, which have been proven to be effective
in retaining indispensable visual features of the query image by
learning the identify function, and hence be conducive to improving
the quality of the generated images [6].

Ultimately, we use several upsampling layers and convolutional
layers as the decoder, which converts the output of the residual
blocks into the prototype image x̃i . In a sense, the whole prototype
image generation process can be briefly summarized as follows,

x̃i = G(xi , hi |Θ), (2)

where Θ refers to the parameters in the generator.

3.2.1 Visual-semantic Consistency. In a sense, the image and
attributes characterize a fashion item from two different levels,
i.e., the visual-level and semantic-level, and thus should share
certain latent consistency. For this purpose, inspired by [8, 38],
we introduce a joint visual-semantic embedding space to model
the inter-modal consistency by regularizing the aforementioned
attribute semantic embedding matrix learning and prototype image
generation. On the one hand, we map the visual feature maps Fxi
of the query image xi into the joint space with the Global Average
Pooling (GAP) [44] layer, which is able to effectively translate the
spatial visual features into low dimension features [2]. Let vi ∈ RL

denote the latent visual embedding of xi . On the other hand, we
encode the vector of attribute value label fi by the attribute semantic
embedding matrix Wa to derive the latent semantic embedding
si ∈ R

L of the query image xi , which can be formulated as,

si =
1

M
Wa fi , (3)

whereM , the total number of attributes, is used for normalization.
Propelled by the superior performance in characterizing the inter-
modal consistency, we utilize the contrastive loss as the regularizer,
which can be expressed as follows,

min
G

Lvse
G = Ei�j

(
max{0,д − cos(si , vi ) + cos(si , vj )}

+max{0,д − cos(vi , si ) + cos(vi , sj )}
)
,

(4)

where д is a margin and cos(·, ·) refers to the cosine similarity
operator. vj and sj are the latent visual embedding and attribute
semantic embedding of the query image x j (i � j), respectively.
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3.2.2 Pixel-wise Consistency. As we expect that the generator can
synthesize the ideal prototype image, which satisfies all the user’s
requirements and hence facilitates the following metric learning
for fashion search. We adopt the L1-norm regularization over the
generated prototype image x̃i and the ground truth image yi for
each query pair to ensure their pixel-wise consistency and promote
the generation quality of prototype images. Formally, we have,

min
G

LL1
G = Ex̃i ,yi [‖x̃i − yi ‖1]. (5)

3.3 Metric Learning for Fashion Search

In this part, we shift to the discriminator introduction which
is devised to work on the metric learning for fashion search. In
our task, it is essential to learn an effective metric to measure
the similarity between the generated prototype image and the
gallery image. Like most metric learning methods [14, 35], we
first adopt a common encoder E in the discriminator to learn the
visual representation of each prototype/gallery image, denoted as
E(x̃i )/E(yj ). Then we introduce the semantic discriminative learning

and the adversarial metric learning with two paradigms to regularize
the discriminative distance metric learning.

3.3.1 Semantic Discriminative Learning. In a sense, in order to
fully meet the user’s requirements, the ideal generated prototype
image x̃i needs to manipulate certain attributes of the query image
according to hi and keeps others untouched. To this end, we
introduce a set of attribute learners to encourage the generated
prototype image x̃i to be discriminative towards the semantic
classification. In particular, we align each attribute am with a
separate attribute classification network Cm , m = 1, 2, · · · ,M ,
which takes the encoded representation E(x̃i ) of x̃i as the input
and outputs its probability distribution regarding the attribute

am , i.e., p(am |x̃i) = [p(e1m |x̃i ),p(e
2
m |x̃i ), · · · ,p(e

Jm
m |x̃i )]. It is worth

noting that each fashion item can take only one value (label)
on each attribute, namely the values (labels) of each attribute
are mutually exclusive. Let e∗m denote the ground truth label of
generated prototype image x̃i regarding the attribute am , which
can be derived by manipulating fi with hi . To retrain the essential
attribute semantics in the generated prototype image, a natural
way is to maximize the corresponding classification probability.

However, due to the poor quality of images generated in the
early stage of the GAN, it is inevitable to undermine the generator
if we directly train these attribute classifiers via these images.
Consequently, we resort to the iterative strategy [34]. Specifically,
the attribute classifiers would be trained with the ground truth
images yi ’s to learn how to accurately classify the attributes in
the discrimination stage. Nevertheless, their duty in the generation
stage is to compel the generator to synthesize the prototype image
with correct attribute manipulation. This idea can be expressed as,

⎧⎪⎪⎨
⎪⎪⎩

max
D

Lcls
D = Eyi ,am [p(e∗m |yi )],

min
G

Lcls
G = Ex̃i ,am [−p(e∗m |x̃i )].

(6)

3.3.2 Adversarial Metric Learning. In the context of fashion search,
we expect the learned metric can minimize the distance between
similar (i.e., positive) images while maximizing that between
dissimilar (i.e., negative) ones. Towards this end, the common

Algorithm 1 The Training Procedure of Our Proposed AMGAN.

Input: T , Y, д, b, γ , μ, λ;
Output: Parameters Θ in the generator G, parameters Φ in the

discriminator D.
1: Initialize parameters in the networks G and D.
2: repeat

3: for d-steps do
4: Sample minibatch from T .
5: Update the discriminator according to Eqn. (13).
6: end for

7: for g-steps do
8: Sample minibatch from T .
9: Update the generator according to Eqn. (14).
10: end for

11: until Converge

strategy is to lean upon either the contrastive loss [4, 10] with
paired data samples (i.e., an anchor sample with a positive or
negative sample) or the triplet loss [35] with triplet data samples
(i.e., an anchor sample, a positive sample and a negative sample).
Accordingly, we propose two metric learning paradigms, i.e., the
pair-based scheme and the triplet-based scheme.
Pair-based Scheme. In our context, the goal of the pair-based

scheme is to minimize the distance among positive gallery image
pairs and maximize the distance among the negative ones. For
simplicity, similar to [29], we convert the distance estimation
between two gallery images, ym and yn , into the similarity
probability as follows,

p(ym ,yn ) = σ (b − d(ym ,yn )) =
1

1 + ed (ym,yn )−b
, (7)

where d(·, ·) is the Euclidean distance and b is a shifted factor to
ensure the probability close to 1 when a pair distance is near 0.

Traditionally, the paired-based scheme would only make use of
the positive/negative pairs in Y. Nevertheless, in our context, it is
inappropriate to neglect the generated prototype image x̃i , which
is highly similar to the ground truth image yi but still the fake
image. In a sense, it can be treated as the hard negative example [7],
which is a negative sample but highly resembles the positive sample
and thus difficult to be distinguished. We thus argue that taking
into account these hard negative examples would strengthen the
capability of the learned distance metric. Particularly, we first
sample a positive imagey+i fromY, which shares the same attribute
values with yi . Then we impose the distance metric to maximize
the probability between the real similar pair (yi ,y+i ) but minimize
the similarity probability between the fake similar pair (x̃i ,y+i ) in
the discrimination stage, which can be formulated as,

max
D

Lmetr ic
D = Eyi ,y+i

[loд p(yi ,y
+
i )] + Ex̃i ,y+i

[loд(1 − p(x̃i ,y
+
i ))].

(8)
On the contrary, as an opponent, the generator should work

on producing the prototype image that imitates the ground truth
image as much as possible and fools the learned distance metric by
minimizing the following objective function,

min
G

Lmetr ic
G = Ex̃i ,y+i

[loд(1 − p(x̃i ,y
+
i ))]. (9)
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Triplet-based Scheme. Different from the pair-based scheme,
the triplet-based one focuses on modeling the relative similarity.
Towards this end, we enforces the distance between the positive pair
(yi ,y

+
i ) to be smaller than that between the negative one (yi ,y−i )

in a given triplet (yi ,y+i ,y
−
i ), where y

−
i is randomly sampled from

the gallery image set Y. Here we define the relative similarity
probability as,

p(yi ,y
+
i ,y

−
i ) = σ (d(yi ,y

−
i ) − d(yi ,y

+
i )) =

1

1 + ed (yi ,y
+
i
)−d (yi ,y

−
i
)
.

(10)
Similar to the pair-based setting, we take the hard negative

example x̃i into consideration, and enforce the distance metric
to distinguish the positive sample y+i and the negative samples
(including y−i and x̃i ). Specifically, we maximize the probability
that the ground truth image yi resembles with the positive image
y+i more closely than the negative sample y−i and the hard negative
sample x̃i at the same time. Therefore, we have,

max
D

Lmetr ic
D = Eyi ,y+i ,y

−
i
[loд p(yi ,y

+
i ,y

−
i )]+

Eyi ,y
+
i
, x̃i [loд p(yi ,y

+
i , x̃i )].

(11)

Yet the generator plays as a rival to synthesize the prototype
image x̃i to imitate the ground truth image and further fool the
learned distance metric by maximizing the probability that x̃i is
more similar with the positive image y+i than the negative one y−i .
Accordingly, we have the following objective function,

min
G

Lmetr ic
G = Ex̃i ,y+i ,y

−
i
[loд(1 − p(x̃i ,y

+
i ,y

−
i ))], (12)

where we convert the maximization to the minimization to unify
the overall optimization towards the generator.

3.4 Joint Optimization

Integrating the two key components of the prototype image gen-
eration and the metric learning for fashion search, we parameterize
the final objective function as below,

Φ∗ = argmax
D

(Lmetr ic
D + λLcls

D ), (13)

Θ∗ = argmin
G

(Lmetr ic
G + γLvse

G + μLL1
G
+ λLcls

G ), (14)

where γ , μ and λ are non-negative trade-off hyper-parameters. Φ
denotes the parameters in the discriminator. Overall, we optimize
the above two components by an adversarial strategy. In the
discrimination stage, the generated image is expected to not only
conduct the correct attributemanipulation but also as a complement
to learn the robust distance metric. In the generation stage, we
enforce the generator to produce prototype images that imitate
the ground truth images and meanwhile fool the learned distance
metric. With the competition in this game, we can ultimately
derive a robust distance metric for flexible fashion search. The
overall procedure of the joint optimization is briefly summarized
in Algorithm 1.

4 EXPERIMENT

In this section, we thoroughly evaluated the two paradigms of
our model: the pair-based scheme (AMGAN-P) and the triplet-based
scheme (AMGAN-T).

Table 1: Attributes and value examples of Shopping100K.

Attributes Attribute Values Total

Category Shirt, Dress, Trousers, Coat, · · · 16
Color Black, Pink, White, Green, · · · 19
Pattern Animal, Plain, Photo, Print, · · · 16
Fit Skinny, Regular, Loose, Oversize, · · · 15
Sleeve Long, Short, Sleeveless, Strapless, · · · 9
Pocket Side, Sleeve, Zip, Flap, · · · 7
Neckline Boat, Backless, Round, Square, · · · 11
Fastening Zip, Belt, Covered, Button, · · · 10
Collar High, Round, Hood, Lapel, · · · 17
Fabric Denim, Canvas, Lace, Leather, · · · 14
Sport Basketball, Hiking, Swim, Tennis, · · · 15
Gender Male, Female 2

Table 2: Attributes and value examples of DARN.

Attributes Attribute Values Total

Clothes Category T-shirt, Skirt, Leather · · · 20
Clothes Color Black, White, Red, Blue, · · · 56
Clothes Button Zipper, Pullover, · · · 12
Clothes Pattern Pure, Stripe, Dot, Lattice, · · · 27
Clothes Length Normal, Long, Short, · · · 6
Clothes Shape Slim, Straight, Cloak, · · · 10
Sleeve Length Short, Long, Sleeveless, · · · 7
Sleeve Shape Puff, Raglan, Petal, Pile, · · · 16
Collar Shape Round, Lapel, V-Neck, · · · 25

4.1 Experimental Settings

Datasets. In this work, we chose the two fashion datasets anno-
tated with rich attributes, i.e., Shopping100K [1] and DARN [17].
Shopping100K consists of 101, 021 fashion items characterized by 12
attributes with 151 possible attribute values. By contrast, DARN is
comprised of 253, 983 fashion items annotated with 9 attributes and
179 possible values. Tables 1 and 2 show their detailed attributes
and corresponding value examples. Without loss of generality, we
focused on the attribute manipulation of tops, where we utilized all
tops of Shopping100K (57, 834 tops in total) and randomly sampled
50, 000 tops from DARN to balance the sizes of the two datasets.
Moreover, similar to [1] and [42], we particularly studied the fashion
search with manipulation over one or two attributes of the fashion
items. In particular, for each given query image xi , we fetched a
target image yi , if possible, that differs from xi with respect to one
or two attributes. Hence, we can get the attribute manipulation

indicator hi for xi , whose j-th entry h
j
i = 1 if the attribute

value e j is presented in yi but not xi , and 0 otherwise. In this
manner, we obtained 39, 764 and 38, 291 triplets, i.e., (xi , hi ,yi )’s,
for Shopping100K and DARN, respectively. Each triplet set is then
split into three chunks: training set (80%), validation set (10%), and
testing set (10%). Notably, as each query image corresponds to only
one attribute manipulation indicator, the query item images in these
three chunks have no overlap. As for building the gallery sets, we
used all the tops of Shopping100K and the randomly selected 50, 000
tops in DARN for these two datasets, respectively.

Baselines. We chose the following state-of-the-art methods re-
garding fashion search with attribute manipulation for comparison.
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(a) Top-K on Shopping100K
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(b) Top-K on DARN
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(c) NDCG@K on Shopping100K
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(d) NDCG@K on DARN
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(e) MRR@K on Shopping100K

100 200 300 400 500 600 700 800 900 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
*

*

*

**

**
**

**
**

**
**

*

*

*

*

**
**

**
**

**
**

M
R
R
@
K

K

AMGAN-P
AMGAN-T
cGAN-P
cGAN-T
FSN
AMNet
FCD

(f) MRR@K on DARN

Figure 4: Overall performance comparison with baseline

methods. Symbols ∗ and ∗∗ denote the statistical significance

for pvalue < 0.05 and pvalue < 0.01, respectively, compared

to the best baseline.

• FCD: FCD [11] learns attribute representations with the multi-
modal data of fashion items, where the attributemanipulation can
be conducted by integrating the desired attribute representations
to the query image while removing the unwanted ones.

• AMNet:AMNet [42] learns a memory block to store the attribute
template representation, and the attribute manipulation is ful-
filled by directly fusing the desired attribute representations into
the query image with a fully-connected layer.

• FSN: FashionSearchNet [1] represents each fashion item as the
concatenation of multiple region-aware attribute representations.
Consequently, the unwished attribute representations can be
substituted with the user’s desired one(s) to achieve the flexible
search. For simplicity, we denoted FashionSearchNet as FSN.

• cGAN-P: To demonstrate the necessity of coupling the prototype
image generation and the metric learning for fashion search in
an end-to-end manner, we separated our model into a cGAN
module and a metric learning module. The cGAN part is derived
from our model by replacing the adversarial metric learning with
the traditional real/fake discriminator [9]. Besides, the metric
learning part follows the pair-based scheme (i.e., Eqn. (9)) but
keeps the generated prototype image x̃i fixed.

• cGAN-T: Similar to cGAN-P, we derived cGAN-T by using
triplet-based scheme (i.e., Eqn. (12)) in the metric learning part.
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Figure 5: Performance of fashion search with one-attribute

manipulation and two-attribute manipulation.

Training Setup. The detailed network structure of AMGAN
is shown in Figure 3. In addition, we empirically found that the
proposed model achieves the optimal performance with д = 0.2,
b = 1 and γ = μ = λ = 1. We iteratively trained the discriminator
and the generator by Adam optimizer with the learning rate of
0.0002 and bath size of 64. For the sake of fairness, we adopted
same evaluation metrics used in [1] and [42], i.e., Top-K and
Normalized Discounted Cumulative Gain (NDCG@K), to assess
the search performance. Meanwhile, we adopted Mean Reciprocal
Rank (MRR@K ), which measures the average position of the ground
truth image in the retrieved ranking list, as one metric.

4.2 On Model Comparison

Figure 4 shows the performance comparison among different
methods on both Shopping100K and DARN, where we launched
5-fold cross validation and reported the average performance. From
this figure, we obtained the following observations: 1) AMGAN-P(T)
consistently outperforms all baseline methods over the two datasets.
This confirms the advantage of our model that utilizes the generated
prototype image to capture visual clues of the target item and hence
boost the performance of fashion search. 2) AMGAN-P(T) shows
significant superiority over cGAN-P(T) in all testing scenarios.
It suggests that the adversarial learning framework can benefit
the robust distance metric learning by incorporating the hard
negative samples, i.e., the generated prototype images. Meanwhile,
this observation also verifies the necessity of jointly modeling
the prototype image generation and metric learning in a unified
end-to-endmanner. 3) FCD shows the worst performance compared
to other methods. It can be attributed to the fact that FCD focuses
on the latent representation learning of the target item while
overlooks the similar/dissimilar relation among fashion items.
Thus, this leads to the limited discriminative capability of the
learned representations. And 4) the performance of all methods
on Shopping100K is better than that on DARN. One possible
explanation is that the clothing item images of DARN suffer
from both complicated backgrounds and various deformations and
occlusions, which raises the difficulties of the fashion search task.
To gain more deep insights, we split the testing set into two

parts according to the number of to-be-manipulated attributes.
Ultimately, we derived 944 samples for one-attribute manipulation
and 3, 033 samples for two-attribute manipulation. Figure 5 shows
the performance comparison in different testing scenarios. As we
can see, most methods exhibit better performance on one-attribute
manipulation compared with two-attribute manipulation, which is
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Table 3: The ablation experiments of AMGAN on two metric learning paradigms.

Approaches
Shopping100K DARN

Top-1 Top-10 NDCG@10 MRR@1000 Top-1 Top-10 NDCG@10 MRR@1000
AMGAN-P-NoVSE 0.1609 0.4717 0.7567 0.2417 0.0857 0.2967 0.7078 0.1486
AMGAN-P-NoL1 0.1652 0.472 0.7551 0.2324 0.0875 0.2998 0.7067 0.1603
AMGAN-P-NoCls 0.0649 0.2824 0.6693 0.1008 0.0144 0.1175 0.5856 0.0324
AMGAN-P 0.1873 0.4805 0.7715 0.2624 0.0978 0.3051 0.7167 0.1678

AMGAN-T-NoVSE 0.1390 0.4476 0.7222 0.2015 0.0681 0.3141 0.6681 0.1230
AMGAN-T-NoL1 0.1368 0.4317 0.7154 0.2001 0.0690 0.3172 0.6692 0.1231
AMGAN-T-NoCls 0.0714 0.3053 0.6565 0.1275 0.0164 0.1219 0.5805 0.0559
AMGAN-T 0.1582 0.4811 0.7384 0.2351 0.1051 0.3876 0.7004 0.1505

Figure 6: Intuitive examples of ablation study. The first case

comes fromAMGAN-P, while the second is fromAMGAN-T.

reasonable as the latter scenario is more challenging. Besides, we
found that AMGAN-P(T) surpasses all baseline methods in both
settings, indicating the effectiveness of our model in all scenarios.

4.3 On Ablation Study

To verify the importance of each component in our model, we
also compared AMGAN-P(T) with the following three derivatives.

• AMGAN-P(T)-NoVSE: To check the impact of the visual-semantic
consistency, we removed the Lvse

G
by setting γ = 0.

• AMGAN-P(T)-NoL1: To exploit the facility of the pixel-wise

consistency, we removed the LL1
G

by setting μ = 0.
• AMGAN-P(T)-NoCls: To study the effect of the semantic
discriminative learning, we removed both Lcls

G
and Lcls

D
by

setting λ = 0.

Table 3 shows the results of different ablation methods. As can be
seen, AMGAN-P(T) shows superiority over AMGAN-P(T)-NoVSE.
This verifies that the visual-semantic consistency loss can bridge
the semantic gap between the low-level visual clues and high-
level attribute semantics to boost the model performance. Besides,
AMGAN-P(T) exceeds AMGAN-P(T)-NoL1 across all evaluation
metrics, implying the importance of regularizing the visual detail
preservation of the generated prototype image in our context.
Furthermore, we found that AMGAN-P(T)-NoCls presents theworst
performance, suggesting the pivotal role of the attribute semantic
discriminative learning for regularizing the correct attribute ma-
nipulation. In a sense, the underlying philosophy is that in our task,
whether the generated prototype image meets the desired attribute
manipulations directly affects the downstream search performance.
To intuitively show the impact of each component, we further
visualized some generated prototype images in Figure 6. As shown
in the first case, AMGAN-P-NoL1 synthesizes the prototype image
with more fuzzy neckline than AMGAN-P, which confirms the

Figure 7: Examples of prototype image generation. Each case

is in the form: “query image + attribute manipulation =

prototype image”.

contribution of the L1 loss in the visual detail preservation. As to
the second example of Figure 6, we noticed that the generated result
of AMGAN-T-NoCls fails to maintain the unmanipulated attributes
(e.g., color), reflecting the significance of the semantic discriminative
regularizer. Overall, these three modules are all pivotal in our model
for achieving superior performance.

4.4 On Case Study

To gain the thorough understanding of our model, apart form the
quantitative evaluation, we also conducted the case study on both
the prototype image generation and the flexible fashion search.

4.4.1 Prototype Image Generation. We provided several visualized
cases regarding the prototype image generation in Figure 7. We
observed that the generated prototype images for target fashion
items generally meet the requirements of desired attribute manipu-
lation over the given query images. As can be seen from the second
example in the first row, according to the attribute manipulation
requirement, only the color of the generated image is modified. As
for other attributes, such as category and neckline, are remained the
same with the query image. In addition, as shown in the third row,
the generated results for cases with two-attribute manipulation are
also satisfactory. Moreover, we found that our model can generate
prototype images properly even for the query images that involve
complicated backgrounds and fashion model noise. For example, in
the fourth row, the indicated attributes are correctly manipulated,
while the model poses and backgrounds are well retained.

4.4.2 Flexible Fashion Search. As shown in Figure 8, we illustrated
several intuitive fashion search results obtained by our AMGAN-P
and AMGAN-T. It can be seen that our proposed AMGAN-P(T)
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Figure 8: The top-4 retrieval results of AMGAN-P and AMGAN-T, and the ground truth images are marked with green boxes.

is capable of capturing users’ attribute manipulation intents and
generating proper prototype images to facilitate the precise fashion
search. As shown in the first example of the left column, the
retrieved items are quite similar to the given query item except
the attribute of “sleeve length”. In addition to the one-attribute
manipulation, we observed that fashion search with two-attribute
manipulation also achieved promising performance (see the third
row). Besides, as shown in the second row of the left column,
the third and fourth retrieved items cannot perfectly meet the
attribute manipulation requirements over the query image due to
the undesired color attribute. Even so, they seem to highly resemble
the target item, indicating the practical value of our model.

4.5 On Running Time

In this part, we compared the time cost of our model with
existing methods over a server equipped with Intel(R) Xeon(R)
CPU E5 − 2620 v4 (@2.10GHz), 128 GB RAM memory, and four
NVIDIA TITAN X GPUs. For each method, we carried out 1, 000
fashion search queries with attribute manipulation, where the
gallery set consists of 50, 000 fashion items. Table 4 shows the
average time cost for each query in different phases, where the item
representation dimension adopted by different methods are also
provided. In a sense, the time cost of the representation learning
mainly depends on the model complexity and the resolution of
the input image, while the search time is subject to the image
representation dimension. Notably, as AMGAN-P(T) and cGAN-
P(T) have the same computation complexity, we only provided
the time cost of AMGAN-P(T). We can see that generating the

Table 4: The comparison of system time cost. Dim: the

dimension of image representations, Tr epr (s): the time cost

of the representation learning, Tsea (s): the time cost of

fashion search, Tsum (s): the total time cost.

Approaches Dim Tr epr Tsea Tsum

FCD 512 0.180 0.153 0.333
AMNet 4, 096 0.019 0.928 0.947
FSN 4, 096 0.139 0.940 1.079
AMGAN-P(T) 512 0.042 0.149 0.191

auxiliary prototype image increases the time cost slightly in the
item representation learning stage. Nevertheless, benefit from the
generated prototype image, we can learn the low-dimensional
and discriminative item representation, which greatly reduces the
distance calculation burden. As a consequence, our model is the
most efficient one compared to the other methods, which costs
0.191s in total for each query.

5 CONCLUSION AND FUTUREWORK

In this work, we present a novel generative attribute manipula-
tion scheme for flexible fashion search. Particularly, the generator
directly synthesizes a prototype image that meets the user’s
requirements of attribute manipulation over the query image to
promote the metric learning for fashion search. Towards the correct
attribute manipulation and robust distance metric learning, the
discriminator is devised to simultaneously tackle the semantic
discriminative learning and adversarial metric learning. Addi-
tionally, the generated prototype images are incorporated as the
hard negative samples to boost the model performance. Extensive
experiments have been conducted on two real-world datasets,
and the encouraging empirical results prove the effectiveness and
efficiency of our proposed model. This also confirms the advantage
of GANs in enhancing the visual understanding for flexible fashion
search. Besides, our model can be easily extended to the attribute
manipulation tasks in other domain, like facial editing and birds
search. One limitation of our work is that currently we only focus
on the supervised prototype image generation, and thus we plan
to explore the unsupervised setting for handling cases without the
ground truth images of target items in the future.
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