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Abstract—Outfit compatibility modeling, which aims to au-
tomatically evaluate the matching degree of an outfit, has
drawn great research attention. Regarding the comprehensive
evaluation, several previous studies have attempted to solve the
task of outfit compatibility modeling by integrating the multi-
modal information of fashion items. However, these methods
primarily focus on fusing the visual and textual modalities, but
seldom consider the category modality as an essential modality. In
addition, they mainly focus on the exploration of the intra-modal
compatibility relation among fashion items in an outfit but ignore
the importance of the inter-modal compatibility relation, i.e., the
compatibility across different modalities between fashion items.
Since each modality of the item could deliver the same character-
istics of the item as other modalities, as well as certain exclusive
features of the item, overlooking the inter-modal compatibility
could yield sub-optimal performance. To address these issues, a
multi-modal outfit compatibility modeling scheme with modality-
oriented graph learning is proposed, dubbed as MOCM-MGL,
which takes both the visual, textual, and category modalities as
input and jointly propagates the intra-modal and inter-modal
compatibilities among fashion items. Experimental results on the
real-world Polyvore Outfits-ND and Polyvore Outfits-D datasets
have demonstrated the superiority of our proposed model over
existing methods.

Index Terms—Outfit Compatibility Modeling, Multi-modal
Recommendation, Graph Convolutional Network

I. INTRODUCTION

RECENT years have witnessed the flourish of the online
fashion industry, which reveals people’s increasing de-

sires for fashion clothing. However, not everyone is sensitive
to the appreciation of beauty and good at making compatible
outfits. Thanks to the prosperity of online fashion-oriented
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Fig. 1. Example of an outfit composition.

websites (e.g., SSENSE1 and CHICTOPIA2), a large number
of compatible outfits composed by fashion experts are publicly
available, which opens the door for investigating solutions for
automatically rating the matching degree of an outfit, i.e., outfit
compatibility modeling. As shown in Figure 1, each outfit
usually consists of multiple fashion items, each of which is
characterized by an image, a textual description, and category
information. Therefore, to fully utilize the cues delivered by
different modalities of fashion items and comprehensively
model the compatibility of outfits, many research efforts [1],
[2] have attempted to tackle the problem of the outfit compat-
ibility modeling with the multi-modal information of fashion
items.

Despite their remarkable performance, they mainly suffer
from the following two key limitations. 1) Prior studies mainly
focus on visual and textual modalities, and few of them utilize
the category information of fashion items. Additionally, these
few studies [3], [4] mainly focus on using items’ categories to
supervise the model learning, but fail to regard the category
information as one essential input modality, i.e., comparable
to the visual and textual modalities. And 2) previous efforts
mainly focus on the intra-modal compatibility, i.e., the compat-
ibility relation between the same modalities of fashion items
in an outfit, but overlook the inter-modal compatibility, i.e., the
compatibility relation between different modalities of fashion
items, thereby probably causing sub-optimal performance. The
underlying philosophy is twofold: a) since different modalities

1https://www.ssense.com/.
2https://www.chictopia.com/.
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Fig. 2. Examples of the inter-modal compatibility relation. The green and
red arrows represent the compatible and incompatible relation, respectively.

of an item tend to reflect the same characteristics of the fashion
item [5], [6], incorporating the inter-modal compatibility (e.g.,
visual-textual compatibility) can supplement the intra-modal
compatibility (e.g., visual-visual compatibility) and strengthen
the overall compatibility estimation from an auxiliary perspec-
tive. b) Meanwhile, different modalities of the same fashion
item can also emphasize different aspects of the same item.
For example, the visual modality is more likely to reveal the
color and pattern of the item, while the textual modality tends
to deliver its material and brand. As seen from Figure 2, the
given coat is visually compatible with both pairs of shoes.
However, if the inter-modal compatibilities between the image
of the coat and the textual descriptions of the two pairs of
shoes are investigated, it would be easy to determine that the
given top is more suitable to go with the quilted boots rather
than the canvas shoes.

Towards the outlined limitations, we propose to incorpo-
rate items’ category information with their content informa-
tion (i.e., visual and textual modalities) and jointly model
their intra-modal and inter-modal compatibilities to optimize
the outfit compatibility modeling. However, this is non-trivial
due to the following challenges. 1) Undoubtedly, the visual
modality plays a pivotal role in outfit compatibility modeling.
It usually delivers not only the low-level visual features (e.g.,
color, shape) but also the high-level visual features (e.g.,
style) of fashion items. Therefore, how to thoroughly explore
the low-level and high-level visual features and thus benefit
the compatibility modeling poses a key challenge for us. 2)
Since each outfit always comprises various fashion items,
among which there is no clear order, and the matching degree
between each pair of items affects the outfit compatibility,
we model the outfit as an item graph. Moreover, similar to
existing studies [7], [8], we resort to Graph Convolutional
Networks (GCNs) [9] to fulfill the outfit compatibility mod-
eling. Accordingly, how to effectively propagate both the
intra-modal and inter-modal compatibilities among the fashion
graph to derive the outfit compatibility also constitutes an
essential challenge. And 3) essentially, one key step of the
outfit compatibility modeling is to learn an accurate latent
representation of the outfit that can capture the compatibility

of the outfit. Therefore, how to seamlessly unify the multi-
modal information of fashion items to derive the latent outfit
representation is another crucial challenge.

To address the aforementioned challenges, a multi-modal
outfit compatibility modeling scheme with modality-oriented
graph learning is presented, dubbed as MOCM-MGL. As
shown in Figure 3, MOCM-MGL consists of three modules:
Multi-modal Embedding, Modality-oriented Graph Learning,
and Outfit Compatibility Estimation. The multi-modal embed-
ding module comprises three encoders to extract the visual,
textual, and category features of fashion items. In particular,
multiple intermediate convolutional layers of the CNN are
adopted to derive both the low-level and high-level visual
features. In addition, the TextCNN [10] is utilized to embed
the textual modality, and directly assign the to-be-learned
embedding vector to each category. The modality-oriented
graph learning module introduces a multi-modal item graph
for each outfit and propagates both the intra-modal and
inter-modal compatibility relation among fashion items to
refine the fashion item representations. Notably, instead of
simply using the 1-D co-occurrence frequency of categories,
the edge between two item nodes is defined by a multi-
dimensional embedding to encode the complex compatibility
relation between two items. Ultimately, the outfit compatibility
estimation module derives the latent outfit representation by
aggregating all the composing items’ representations, and
based on that, estimates the outfit compatibility with the Multi-
Layer Perceptron (MLP) [11].

The main contributions can be summarized threefold:

• We present a novel multi-modal outfit compatibility
modeling scheme with modality-oriented graph learning,
MOCM-MGL. To the best of our knowledge, this is
the first attempt to fully exploit the visual, textual, and
category modalities with GCN for outfit compatibility
modeling.

• The intra-modal and inter-modal compatibility relation
between two fashion items is clearly defined and unified
to thoroughly model the outfit compatibility.

• Extensive experiments conducted on the Polyvore Outfits-
ND and Polyvore Outfits-D datasets demonstrate the
superiority of our proposed method over the state-of-the-
art methods. As a byproduct, we have released the codes
and involved parameters to benefit other researchers3.

The remainder of this paper is organized as follows. Section
II briefly reviews the related work. Section III details the pro-
posed MOCM-MGL. The experimental results and analyses
are presented in Section IV, followed by the conclusion and
future work in Section V.

II. RELATED WORK

A. Outfit Compatibility Modeling

The recent flourish of the fashion industry has promoted
researchers to pay attention to many fashion analysis tasks,
such as clothing retrieval [12], compatibility modeling [13],

3https://outfitcompatibility.wixsite.com/mocm-mgl.
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Fig. 3. Illustration of the proposed scheme, which consists of three modules: Multi-modal Embedding, Modality-oriented Graph Learning, and Outfit
Compatibility Estimation. The multi-modal embedding module extracts the multi-modal features of fashion items, and the modality-oriented graph learning
module refines the representation of each fashion item by absorbing its intra-modal and inter-modal compatibility relation with the other items. Ultimately,
the outfit compatibility estimation module first aggregates the composing items’ representations and then uses the MLP to estimate the outfit compatibility
score.

[14], fashion trend prediction [15], and clothing recom-
mendation [16], [17]. In particular, as the key to many
fashion-oriented applications, such as complementary item re-
trieval [18] and personal capsule wardrobe creation [19], outfit
compatibility modeling has drawn great research attention.
According to the input information of fashion items, existing
outfit compatibility modeling studies can be broadly grouped
into two categories: single-modal methods and multi-modal
methods.

Single-modal methods only utilize the visual or textual
modality of fashion items. Apparently, the visual modality
plays a significant role in outfit compatibility modeling, as
many characteristics of items, such as color and shape, are
mainly encoded by visual information. Therefore, existing
efforts mainly exploit the visual information of fashion items.
For example, Tangseng et al. [20] defined an outfit as a
few ordered slots, corresponding to the common item cate-
gories (range from outerwear to accessory), and concatenated
the visual representations of all the composing items in the
outfit as the outfit representation. In addition, Cucurull et
al. [21] built a graph with all fashion items in the dataset,
where each node is initialized by the corresponding visual
feature and receives the message from its neighborhood to
learn the contextual item embedding. Apart from the visual
modality, Chaidaroon et al. [22] investigated the potential of
the textual modality of fashion items in the outfit compatibility
modeling, where a text-based neural compatibility ranking
model is proposed. Although great progress has been made
by these works, they utilize only one modality of fashion

items and overlook the potential to combine the multi-modal
information of fashion items.

Multi-modal methods involve more than one modality of
fashion items. For example, Han et al. [23] proposed a
bidirectional LSTM method to sequentially model the outfit
compatibility by predicting the next item conditioned on pre-
vious items, where the visual semantic embedding (VSE) [24]
is used to capture the inter-modal consistency of visual and
textual modalities. Apparently, this method only considers
the consistency between two modalities of fashion items and
neglects the complementarity between them. Towards this end,
several researchers have been trying to use the fusion strategy
(i.e., early fusion and late fusion) to integrate the multi-
modal information. 1) Early fusion based approaches typically
fuse the input features extracted from each modality into a
single representation before compatibility modeling [25]. For
example, Tan et al. [26] fused the visual and textual features
of fashion items by the element-wise product operation, while
Yang et al. [27] and Sun et al. [28] directly combined the
visual and textual features of each item by the concatenation
operation before feeding the item feature into the compatibility
modeling module. In addition, Laenen et al. [29] used the
attention mechanism to fuse the visual and textual features, and
projected the multi-modal representations to the type-specific
compatibility spaces. 2) Late fusion based methods [7], [30]
first perform the compatibility modeling directly over each
modality feature, and then linearly combine the estimated
outfit compatibility scores from different modalities. For ex-
ample, Cui et al. [7] introduced the Node-wise Graph Neural
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Network (NGNN) for the outfit compatibility modeling from
each modality. The overall outfit compatibility score is derived
by a weighted summation of the scores obtained by the visual
and textual modalities. In a sense, both early fusion based
and late fusion based methods overlook the importance of the
inter-modal compatibility relation between fashion items in the
outfit compatibility modeling, which is the major concern of
this work.

It is worth mentioning that some multi-modal methods have
incorporated the category information as an indicator to guide
the outfit compatibility modeling. For example, Vasileva et
al. [3] presented a pair-wise outfit compatibility modeling
scheme, where a category-specific embedding space is intro-
duced for each pair of categories. Besides, Wang et al. [4]
learned the overall compatibility from all category-specified
pairwise similarities between fashion items, and used the
backpropagation gradients to diagnose incompatible factors.
Differently, as a major novelty, we take the category modality
as one essential input modality, i.e., comparable to the visual
and textual modalities, to enhance the outfit compatibility
modeling performance with GCN.

B. Graph Convolutional Network

Recently, Graph Neural Networks (GNNs) have attracted
increasing research attention due to the great expressive power
of graphs [31]. The concept of GNNs is first proposed in [32],
which extends the neural networks for processing the data
represented in graph domains. The target of GNNs is to
learn a state embedding for each node, which absorbs the
information of one’s neighborhood. To remedy the limitation
that CNNs cannot be operated on non-Euclidean data, some
researchers redefined the notion of convolution for graph data
and proposed GCNs [33].

GCNs have been widely used in many tasks and domains,
such as computer vision [34], [35], natural language process-
ing [36], [37], and recommender systems [38]–[41]. Recently,
in the fashion domain, as each outfit can be abstracted as an
item graph, several GCN-based methods, such as NGNN [7],
HFGN [8], and Neural Graph Filtering [42], have been pro-
posed for fashion compatibility modeling. The rationale of
these methods is to update the item embedding with its context
in the outfit. Different from the methods that only propagate
the general item embedding, in this work, we conducted a
modality-oriented GCN, which jointly propagates the intra-
modal and inter-modal compatibility relation among fashion
items in an outfit.

III. METHODOLOGY

In this section, we first present the notations and problem
formulation and then detail the proposed multi-modal outfit
compatibility modeling scheme.

A. Notations and Problem Formulation

Since different modalities (e.g., the visual image, text de-
scription, and category) can deliver different aspects of fashion
items, we propose to explore all the modalities of fashion

items to comprehensively measure the compatibility score
of outfits. Suppose that we have a set of Q fashion items
I = {xi}Qi=1, coming from Nc categories. Each fashion item
xi ∈ I is attached with a visual image, a textual description,
and a category, termed as fi, ti, and ci, respectively. Based
on these items, we can derive a set of N training outfit
samples Ω = {(Oj , yj)|j = 1, · · · , N}, where Oj is the
j-th outfit, and yj is the ground truth label that indicates
whether the outfit is compatible or not. Specifically, yj = 1
denotes that the j-th outfit Oj is compatible, and yj = 0
otherwise. Each outfit can be regarded a set of fashion items,
i.e., Oj =

{
xj
1, x

j
2, · · · , x

j
Sj

}
, where xj

i ∈ I denotes the i-
th composing item of the outfit Oj , and Sj represents the
total number of fashion items in the outfit Oj . Notably, since
each outfit can be composed of various fashion items, Sj is
variable. Based on these data, we aim to devise a compre-
hensive multi-modal outfit compatibility modeling scheme F ,
which is capable of integrating the multi-modal information
of its composing fashion items toward the accurate outfit
compatibility estimation. Mathematically, we have:

ŷj = F({f j
i , t

j
i , c

j
i}

Sj

i=1|Θ), (1)

where f j
i , tji , and cji represent the visual image, textual

description, and category of the i-th item of the j-th outfit,
respectively. Θ is the set of to-be-learned parameters, and ŷj

denotes the estimated compatibility score of the outfit Oj . For
brevity, we omit the superscript j of the j-th outfit Oj in the
rest of this paper.

B. Multi-modal Embedding

First, we resort to the following encoders to learn the visual,
textual, and category representation of each fashion item,
respectively.

Image Encoder. Regarding the visual image of each item,
we utilize the CNN to extract its visual features. It is well
known that the CNN comprises multiple convolutional layers,
where the shallow layers can capture the low-level visual
features, such as the color of the item, while the deep layers
can capture the high-level features, such as the style of the
item [43]. Since both the low-level and high-level visual
features would affect the compatibility among fashion items,
similar to the work [4], we take both the shallow and deep
layers’ outputs into consideration to learn the visual repre-
sentation for each item instead of only using the final layer’s
output. In particular, we resort to the Global Average Pooling
operation (GAP) [44], which has shown remarkable perfor-
mance in the discriminative visual property extraction [45], to
summarize the learned visual representations. Formally, given
the image fi of the fashion item xi, we can obtain its visual
feature as follows,

fi =
[
GAP

(
Conv1 (fi)

)
, · · · ,GAP

(
ConvL (fi)

)]
, (2)

where fi ∈ Rdf is the visual feature of the item xi, df
is the dimension of the visual feature, and [ , ] denotes the
concatenation operation. In addition, Convl represents the l-
th convolutional layer used for visual encoding of CNN, and
L is the total number of convolutional layers.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 09,2022 at 03:35:53 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3134164, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021 5

Text Encoder. To embed the textual description of each
fashion item, we adopt the TextCNN, which has achieved
astonishing success in various natural language processing
tasks [46], [47]. In particular, we first represent the textual
description (i.e., a sequence of words) as a matrix, each
column of which refers to a word embedding learned by
the pre-trained word2vec [48]. We then employ the CNN
architecture to extract the semantic information of the text
description of the given fashion item. Specifically, given the
textual description ti of the fashion item xi, we obtain its
textual feature as follows,

ti = TextCNN (ti) , (3)

where ti ∈ Rdt denotes the extracted textual feature, and dt
is its dimension.

Category Encoder. In addition to the visual and textual
information, the category information of the composing items
also plays an important role in the outfit compatibility es-
timation. Different from previous studies that only incorpo-
rate the category information to guide the outfit compat-
ibility modeling, we propose to regard the category as a
unique input modality. To represent the discrete categories,
we introduce a category embedding matrix C ∈ RNc×dc =
{c1, c2, · · · , cNc

}, where Nc is the total number of categories
in the dataset, dc is the dimension of the category feature, and
ck denotes the embedding for the k-th category. Therefore, for
each fashion item xi, its category feature ci can be obtained
according to its category information ci.

Ultimately, based on the above three encoders, for each
fashion item xi, we can obtain its visual feature fi, textual
feature ti, and category feature ci.

C. Modality-oriented Graph Learning
Since each outfit comprises a set of fashion items with

no clear order, we treat each outfit as an item graph and
hence resort to the GCN to explore its outfit compatibility.
In particular, we construct an item graph G = (V, E) for
each outfit O, where V denotes the set of nodes, each of
which represents a composing item, and E stands for the set
of edges representing the compatibility relation among items.
We assume that the compatibility between each pair of items
should be considered in the outfit compatibility modeling, and
thus make the fashion graph a complete graph. Namely, there
is an edge between each pair of nodes.

1) Node Initialization: Different from the conventional
methods that assign each node with a single hidden state
vector, we attribute each node with three modality-oriented
hidden state vectors, corresponding to the three modalities.
Concretely, for each fashion item xi, we employ linear trans-
formations to map its multi-modal features into a common
space to derive the modality-oriented hidden state vectors as
follows, 

h0
i,1 = Wf fi + bf ,

h0
i,2 = Wtti + bt,

h0
i,3 = Wcci + bc,

(4)

where h0
i,1 ∈ Rd, h0

i,2 ∈ Rd, and h0
i,3 ∈ Rd are the initial

hidden representations of the i-th item’s visual, textual and

category modalities, respectively. For ease of the following
presentation, without losing the generality, we arrange the
visual, textual and category modalities as the first, second, and
third modalities of fashion items, respectively. Wf ∈ Rdf×d,
Wt ∈ Rdt×d, and Wc ∈ Rdc×d are the linear mapping
matrices, bf ∈ Rd, bt ∈ Rd and bc ∈ Rd are the biases,
where d is the dimension of the hidden state representation.

2) Edge Representation Generation: Previous GCN-based
studies [7], [8] on outfit compatibility modeling mainly utilize
edges to indicate the graph topological information and assign
each edge with a scalar. Beyond that, we model the edge
between two items with a multi-dimensional feature rather
than a one-dimensional weight, which is capable of encoding
the complex compatibility relation between items.

As mentioned above, apart from the intra-modal compati-
bility, the interaction of different modalities between fashion
items can also deliver the compatibility relation between
fashion items. Towards this end, we introduce the fine-grained
edge representation eij,pq to capture the compatibility between
the p-th modality of node vi and the q-th modality of node
vj , where p, q = 1, 2, 3. It is worth noting that 1) when p = q,
eij,pq represents the intra-modal compatibility relation, and 2)
when p ̸= q, eij,pq represents the inter-modal compatibility
relation. Regarding the fine-grained edge representation gen-
eration, it is worth noting that the order of items in each item
pair does not influence the underlying compatibility relation
Accordingly, in this work, we employ the symmetric element-
wise product function to generate the edge representation.
Specifically, we produce the fine-grained edge representation
eij,pq for the k-th propagation step as follows,

ekij,pq = α
(
Wk

e

(
Wk

nh
k−1
i,p ⊙Wk

nh
k−1
j,q

)
+ bk

e

)
, (5)

where hk−1
i,p is the hidden representation of the p-th modality

of the node vi, and hk−1
j,q is the hidden representation of the

q-th modality of the node vj . Wk
n ∈ Rd×d, Wk

e ∈ Rd×de ,
and bk

e ∈ Rde are the parameters for the edge representation
generation in the k-th propagation step. Wk

n is the weight
matrix of the linear transformation to project the node embed-
ding to latent compatibility space, while Wk

e is the weight
matrix of the linear transformation to further compress the
latent compatibility relation into a lower-dimensional space,
where the compatibility relation with all the other nodes
is aggregated. In particular, to facilitate the following mean
pooling and max pooling based compatibility aggregation, we
make de = d/2. α (·) is the ReLU activation function, and ⊙
denotes the element-wise product operation.

3) Intra-modal and Inter-modal Compatibility Propagation:
During the intra-modal and inter-modal compatibility propa-
gation, we make each modality of each node absorb the fine-
grained compatibility information from its connected edges to
update its hidden state vector. Without losing the generality, as
an example, we present the compatibility aggregation process
toward the p-th modality of the node vi as follows,

mk
N (i),pq = AGG

({
ekij,pq,∀j ∈ N (i)

})
,

mk
N (i),p =

1

M

M∑
q=1

mk
N (i),pq,

(6)

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 09,2022 at 03:35:53 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3134164, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021 6

where N (i) is the neighbors of node vi, i.e., the nodes con-
nected to the node vi in the graph. mk

N (i),pq ∈ Rd denotes the
aggregated compatibility information from the q-th modality of
the node’s neighbors toward the p-th modality of the node vi in
the k-th propagation step, while mk

N (i),p ∈ Rd represents the
aggregated compatibility information from all the modalities of
the node’s neighbors toward the p-th modality of the node vi in
the k-th propagation step. M is the total number of modalities,
which is 3 in our context. AGG(·) is the aggregation function,
which is implemented with both the mean and max pooling
operations. Specifically, we have mk

N (i),pq =[
γmean

({
ekij,pq,∀j ∈ N (i)

})
, γmax

({
ekij,pq,∀j ∈ N (i)

})]
,

(7)
where γmean (·) and γmax (·) are the mean and max pooling
operations, respectively. In a sense, the mean and max pooling
operations are used for extracting the average and most promi-
nent information from the connected edges, respectively.

Then, we adopt the Gated Recurrent Unit (GRU) [49] to se-
lectively absorb the compatibility information from the node’s
neighbors and the original hidden information of the node.
Specifically, we define the modality representation update
function for each node as follows,

zki,p = σ
(
Wk

z

[
mk

N (i),p,h
k−1
i,p

]
+ bk

z

)
,

rki,p = σ
(
Wk

r

[
mk

N (i),p,h
k−1
i,p

]
+ bk

r

)
,

h̃k
i,p = tanh

(
Wk

h

[
mk

N (i),p, r
k
i,p ⊙ hk−1

i,p

]
+ bk

h

)
,

hk
i,p =

(
1− zki,p

)
⊙ hk−1

i,p + zki,p ⊙ h̃k
i,p,

(8)

where Wk
z ∈ R2d×d, Wk

r ∈ R2d×d, and Wk
h ∈ R2d×d

are weight matrices of the update function, while bk
z ∈ Rd,

bk
r ∈ Rd, and bk

h ∈ Rd are biases. zki,p and rki,p are update
gate vector and reset gate vector, respectively. σ (·) is the
sigmoid activation function, and tanh (·) is the tanh activation
function. hk

i,p denotes the hidden representation of the p-th
modality of the item xi in the k-th propagation step. As can
be seen, the node update function (i.e., GRU) takes both the
hidden modality representation of node vi and the aggregated
compatibility information mk

N (i),p as the input. In this manner,
the updated representation of the node vi comprises not only
the item intrinsic characteristics but also the compatibility
relation with connected items.

D. Outfit Compatibility Estimation

After K propagation steps, we obtain a series of multi-
modal hidden representations of fashion item xi, namely{
h0
i , · · · ,hK

i

}
, where hk

i =
[
hk
i,1,h

k
i,2,h

k
i,3

]
, and k =

1, · · · ,K. Since the representations obtained at different prop-
agation layers absorb the neighbor compatibility information
at different levels, toward the comprehensive representation,
we concatenate them to constitute the final representation of
each fashion item xi as follows,

h∗
i =

[
h0
i , · · · ,hK

i

]
, i = 1, · · · , Sj . (9)

Thereafter, we define the final representation of the outfit
based on these composing items’ representations. Notably,

instead of using the concatenation of all composing items’
representations, we further apply a pooling layer that includes
both the max pooling and the mean pooling operations to
derive the whole outfit representation. We expect that the max
pooling and mean pooling operations can capture the most
prominent and overall features of all composing items’ hidden
states, respectively. Specifically, we obtain the final embedding
for each outfit O as follows,

h̃ = [γmean ({h∗
i ,∀vi ∈ V}) , γmax ({h∗

i ,∀vi ∈ V})] . (10)

Ultimately, an MLP with two layers is empirically chosen
as the final compatibility estimation, in which the outfit
embedding is fed into to compute the final compatibility score
of the outfit O as follows,

ŷ = σ
(
W2

(
α
(
W1h̃+ b1

))
+ b2

)
, (11)

where W1 ∈ Rdo×d′
, W2 ∈ Rd′×1, b1 ∈ Rd′

and b2 ∈ R1

are the parameters of the MLP, where do is the dimension
of h̃, and d′ is the number of hidden units of the MLP.
σ is the sigmoid active function, used for projecting the
estimated compatibility score into the range of [0, 1], and
making the estimated compatibility score can be regarded as
the probability that the outfit is compatible.

Optimization To optimize the proposed model, we adopt
the binary cross-entropy loss, which shows the great superior-
ity in the classification task [50], [51], formally,

Lclf = −y log (ŷ)− (1− y) log (1− ŷ) , (12)

where ŷ and y denote the estimated score and the ground truth
label, respectively. Inspired by [4], to encourage the CNN to
encode normalized representations in the latent space, we add
additional loss to penalize the training process as follows,

Lemb =
S∑

i=1

∥fi∥2 , (13)

where S represents the number of fashion items in an outfit
sample, and ∥·∥2 denotes the Euclidean norm of a vector.
Ultimately, the final objective function can be formulated as
follows,

Ltotal =
∑
Ω

(Lclf + λ1Lemb) + λ2 ∥Θ∥2F , (14)

where λ1 and λ2 are the trade-off hyper-parameters, control-
ling the weights for the normalization loss and overfitting
regularization loss, respectively. As aforementioned, Ω is the
training set, and Θ refers to the set of to-be-learned parame-
ters. ∥·∥F denotes the Frobenius norm of a matrix.

IV. EXPERIMENT

To evaluate the proposed method, we conducted extensive
experiments on the real-world dataset by answering the fol-
lowing research questions:

• RQ1: Does MOCM-MGL achieve better performance
than state-of-the-art methods?

• RQ2: How does each component affect the MOCM-
MGL?

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 09,2022 at 03:35:53 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3134164, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021 7

• RQ3: How does each modality influence the perfor-
mance?

• RQ4: How about the sensitivity of MOCM-MGL for
certain vital hyper-parameters?

A. Experimental Settings

1) Dataset: To evaluate the proposed method, we adopted
the Polyvore Outfits dataset [3], which is widely utilized by
several works on fashion analysis [26], [52]. This dataset
is collected from the Polyvore fashion website. In the light
of whether fashion items overlap in the training, validation,
and testing dataset, the Polyvore Outfits dataset provides two
dataset versions: the nondisjoint and disjoint versions, termed
as Polyvore Outfits-ND and Polyvore Outfits-D, respectively.
There are a total of 68, 306 outfits in the Polyvore Outfits-ND,
divided into three sets: training set (53, 306 outfits), validation
set (5, 000 outfits), and testing set (10, 000 outfits). As for
the disjoint version, Polyvore Outfits-D, there are a total of
32, 140 outfits, where 16, 995 outfits for training, 3, 000 outfits
for validation, and 15, 145 outfits for testing. Each outfit in
the Polyvore Outfits-ND has at least 2 items and up to 19
items, while that in the Polyvore Outfits-D has at least 2
items and up to 16 items. Each fashion item in these two
datasets contains multiple modalities, e.g., the visual image,
textual description, popularity score, and category information.
Regarding the category information of fashion items, there are
11 coarse-grained categories and 154 fine-grained categories
in the Polyvore Outfits dataset. In particular, we utilized the
visual images, textual descriptions, and category information
of fashion items in this work.

2) Evaluation tasks: To evaluate the proposed model, we
conducted experiments on two tasks: compatibility estimation
and fill-in-the-blank (FITB) fashion recommendation.

Compatibility estimation: This task is to estimate a com-
patibility score for a given outfit. Different from the previous
study [23] that generates negative outfits randomly without any
restriction, we replaced each item in the positive compatible
outfit with another randomly selected item in the same cat-
egory, which makes the task more challenging and practical.
The ratio of positive and negative samples is set to 1 : 1.
The positive samples are labeled as 1, while the negative
samples are labeled as 0. To evaluate the performance, similar
to previous studies [23], [52], we selected the area under the
receiver operating characteristic curve (AUC) as the evaluation
metric.

FITB fashion recommendation: Given an incomplete out-
fit and a target item annotated with the question mark, this
task aims to select the most compatible fashion item from
a candidate item set to fill in the blank and transform the
given incomplete outfit into a compatible and complete one.
This task is rather practical since people always need to buy a
garment to match the garments they already have. Concretely,
we constructed the FITB question by randomly selecting an
item from a positive/compatible outfit as the target item and
replacing it with a blank. We then randomly selected 3 items
in the same category along with the target item to form the
candidate set. The performance on this task is evaluated by

the accuracy (ACC) of choosing the correct item from the
candidate items.

3) Implementation Details: For the image encoder, we
selected the ResNet-18 [53] as the backbone network and used
the output of its final 4 convolutional layers (i.e., conv2 x,
conv3 x, conv4 x, and conv5 x) to derive the multi-layer
visual representation according to Eqn. (2). In this case, L = 4
in Eqn. (2). Regarding the text encoder, we first employed
the pre-trained word2vec tool to obtain the 300-D vector for
each word, and then fed the concatenation of all word vectors
into the TextCNN. In particular, the TextCNN is equipped
with 100 ∗ 5 filters in 3 distinct sizes [2, 3, 4]. Ultimately,
we captured a 300-D textual representation for each item.
As for the category encoder, we empirically used the fine-
grained category information and set the dimension of the
category vector as 256. Accordingly, the number of category
embeddings Nc is 154.

For the optimization, we employed the adaptive mo-
ment (Adam) [54] estimation method. We adopted the
grid search strategy to determine the optimal values
for the hyper-parameters (i.e., λ1 and λ2) among the
values {5er | rϵ− 5, · · · ,−1}. In addition, the learn-
ing rate, batch size, the number of propagation steps
K, and the dimension of the hidden state d for all
methods are searched in

[
1e−3, 5e−4, 1e−4, 5e−5, 1e−5

]
,

[24, 32, 64, 128, 256], [1, 2, 3, 4, 5], and [16, 32, 64, 128, 256],
respectively. The proposed model is fine-tuned based on train-
ing set and validation set for 15 epochs, and the performance
on testing set is reported. We experimentally found that the
model achieves the optimal performance with the initial learn-
ing rate is 5e−5 and decays by a factor of 0.5 every 10 epochs,
the batch size of 32, the number of propagation steps K = 4,
and the dimension of the hidden state d = 64, respectively.
The hyper-parameters λ1 and λ2 in the loss function are 5e−3

and 5e−5, respectively. All experiments are implemented by
PyTorch.

B. On Model Comparison (RQ1)

To validate the effectiveness of our MOCM-MGL, we chose
the following state-of-the-art methods as baselines.

• Bi-LSTM [23]: By viewing an outfit as a sequence,
this method exploits the latent item interaction by the
bidirectional LSTM and utilizes the VSE to capture the
inter-modal consistency.

• Concatenation-Visual [20]: This method concatenates
the visual features of all fashion items into a vector, and
then uses an MLP as the binary classifier to compute the
outfit compatibility score.

• Concatenation-All: For a fair comparison, this method
concatenates the visual, textual, and category features of
all fashion items into a vector, and then uses an MLP
to estimate the outfit compatibility. The encoders are the
same as our proposed model.

• Pooling [1]: This is an early fusion based method that first
concatenates the visual, textual, and category features of
each fashion item, and then applies the average pooling
operation to aggregate fashion items.
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TABLE I
PERFORMANCE COMPARISON ON POLYVORE OUTFITS-ND AND

POLYVORE OUTFITS-D. † INDICATES THE RESULTS ARE CITED FROM [29].

Method Polyvore Outfits-ND Polyvore Outfits-D
AUC(%) ACC(%) AUC(%) ACC(%)

Bi-LSTM 66.24 38.11 62.72 37.43
Concatenation-Visual 85.21 49.93 78.62 43.05

Concatenation-All 87.61 51.35 80.23 45.14
Pooling 89.09 56.58 83.99 51.37

Type-Aware 87.23 57.78 84.49 55.85
SCE-Net 87.09 57.80 84.22 55.44
NGNN 87.12 51.79 83.61 48.37
ABF† 89.99 61.90 87.48 60.78

MOCM-MGL 93.26 63.26 90.79 61.05

• Type-Aware [3]: This method maps the item pairs into
the category-specific embedding spaces, and estimates the
outfit compatibility by averaging all distances of the item
pairs in the spaces.

• SCE-Net [26]: Different from Type-Aware, this method
learns condition-aware embeddings by item’s own charac-
teristics without explicit category supervision. In particu-
lar, this method also uses the early fusion strategy, which
integrates the visual and textual features of fashion items
by the element-wise product operation.

• NGNN [7]: This method constructs a subgraph for each
outfit, where each node represents a category and edges
represent interactions among nodes. In this way, the item
representation can be enhanced by that of the items in the
same outfit. The outfit compatibility is jointly modeled
from two channels of NGNN, whose inputs are the visual
and textual modalities.

• ABF [29]: This is an attention-based fusion method that
utilizes the attention mechanism to fuse the visual and
textual features of fashion items. Since the experiment
setting in [29] is consistent with ours, we directly cited
the results.

Notably, all methods use the ResNet-18 as the backbone
network for a fair comparison. Table I shows the performance
comparison among different approaches on the Polyvore
Outfits-ND and Polyvore Outfits-D datasets under different
tasks. From this table, the following observations can be made:

1) MOCM-MGL surpasses all the baselines by a large
margin with respect to all metrics, which demonstrates
the superiority of our proposed framework.

2) Concatenation-All outperforms Concatenation-Visual,
which verifies the effectiveness of integrating the multi-
modal information of fashion items.

3) The performance of SCE-Net is similar to that of Type-
Aware, demonstrating the great potential of learning
condition-aware embeddings by item’s own character-
istics instead of explicit category indicator.

4) ABF shows superiority over all multi-modal baselines,
which reflects the superiority of utilizing the attention
mechanism to fuse the multi-modal information.

5) It is unexpected that the graph-wise method NGNN
performs worse than the pair-wise methods (i.e., Type-
Aware and SCE-Net). The possible reason is that NGNN
focuses on propagating category-oriented fashion com-

patibility. However, in the context of this study, the
negative outfit shares the same item category as the
positive one, which is hardly handled by NGNN.

C. On Ablation Study (RQ2)

To explore the contribution of each component of the
proposed model, we introduced the following derivatives from
the model.

• w/o-MGL: To explore the effect of the proposed
modality-oriented graph learning scheme, we disabled the
module by directly concatenating the visual, textual, and
category features of each fashion item obtained by the
multi-modal embedding module, and then fed it into the
outfit compatibility estimation.

• w/o-Inter: To validate the necessity of exploring the
inter-modal compatibility among fashion items, we re-
defined the edge representation between two item nodes
as ekij = α

(
Wk

e

(
Wk

nh
k−1
i ⊙Wk

nh
k−1
j

)
+ bk

e

)
, where

hk
i =

[
hk
i,1,h

k
i,2,h

k
i,3

]
. In this way, only the intra-modal

compatibility is considered.
• w/o-Edge: To investigate the importance of edge-

based compatibility relation modeling, we removed the
edge representation generation unit and directly ag-
gregated information from the hidden states of neigh-
bors, i.e., we changed Eqn. (6) to mk

N (i),pq =

AGG
({

hk
j,q,∀j ∈ N (i)

})
.

• w/o-GRU: To verify whether it is necessary to retain
the original hidden information of the node when updat-
ing the node representation, we removed the GRU unit
and only utilized the aggregation information, i.e., we
changed Eqn. (8) to hk

i,p = mk
N (i),p.

• w/o-MultiLayer: To explore the importance of integrat-
ing representations obtained at different propagation lay-
ers, we treated the representation obtained at the final K-
th propagation layer as the updated item representation,
i.e., we made h∗

i = hK
i in Eqn. (9).

• w/o-MeanPool: To validate the function of the mean
pooling operation in the outfit compatibility estimation
module, we only employed the max pooling operation
to generate the final outfit embedding, i.e., we rewrote
Eqn. (10) as h̃ = γmax ({h∗

i ,∀vi ∈ V}).
• w/o-MaxPool: Similarly, we removed the max pooling

operation in the outfit compatibility estimation module
to learn its effect by making h̃ = γmean ({h∗

i ,∀vi ∈ V})
in Eqn. (10).

Table II shows the performance comparison between
MOCM-MGL and its derivatives. From this table, we obtained
the following observations:

1) Our model consistently surpasses all derivations across
all metrics, demonstrating the effectiveness of each
component in the proposed MOCM-MGL.

2) MOCM-MGL demonstrates superiority over w/o-MGL,
which implies that the modality-oriented GCN can
propagate the intra-modal and inter-modal compatibility
relation among fashion items, and therefore boost the
expressiveness of item representations.
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TABLE II
ABLATION STUDY ON POLYVORE OUTFITS-ND AND POLYVORE

OUTFITS-D DATASETS.

Method Polyvore Outfits-ND Polyvore Outfits-D
AUC(%) ACC(%) AUC(%) ACC(%)

w/o-MGL 92.31 61.84 88.93 58.44
w/o-Inter 92.95 62.87 89.18 59.27
w/o-Edge 92.92 62.75 89.76 59.35
w/o-GRU 92.45 62.41 88.97 58.77

w/o-MultiLayer 93.07 62.53 89.57 58.94
w/o-MeanPool 93.13 62.29 90.07 60.16
w/o-MaxPool 92.72 61.87 89.08 58.12
MOCM-MGL 93.26 63.26 90.79 61.05

3) MOCM-MGL outperforms w/o-Inter, implying the ne-
cessity of investigating the inter-modal compatibility
among fashion items, to fully explore the fine-grained
compatibility relation among items.

4) MOCM-MGL achieves better performance than w/o-
Edge. This confirms the benefit of the edge-based
compatibility relation modeling and the compatibility
relation propagation during the outfit compatibility mod-
eling.

5) MOCM-MGL surpasses w/o-GRU, which implies that
selectively absorbing the compatibility information from
the nodes’ neighbors and the original hidden information
of the node can boost the model performance.

6) w/o-MultiLayer performs worse than our MOCM-MGL.
This implies that different propagation layers indeed
absorb the neighbor compatibility information at differ-
ent levels, and contribute to the comprehensive outfit
compatibility estimation.

7) MOCM-MGL shows superiority over w/o-MaxPool and
w/o-MeanPool. This suggests that both the most promi-
nent and the overall hidden states of fashion items are
beneficial to the outfit compatibility modeling. Addition-
ally, we observed that w/o-MeanPool outperforms w/o-
MaxPool, which reflects that the max pooling operation
is more effective than the mean pooling operation. This
indicates that the most prominent feature of all com-
posing items’ hidden states, compared with the overall
feature, has a greater impact on the outfit compatibility
estimation.

D. On Modality Comparison (RQ3)

To investigate the influence of different modalities (i.e.,
visual image, textual description, and category) on the per-
formance, we compared the MOCM-MGL with different
modality combinations. Notably, due to the concern that the
negative outfit shares the same item categories as the positive
outfit, we did not adopt the method that only utilizes category
information for comparison. In addition, there are two kinds
of item categories: coarse-grained categories and fine-grained
categories. Therefore, there are nine modality combinations:
Visual, Visual+Category (coarse), Visual+Category (fine), Tex-
tual, Textual+Category (coarse), Textual+Category (fine), Vi-
sual+Textual, All (coarse), and All (fine), where coarse, fine,
and All indicate that coarse-grained categories, fine-grained

TABLE III
THE PERFORMANCE OF OUR PROPOSED METHOD WITH DIFFERENT

MODALITY COMBINATIONS.

Method Polyvore Outfits-ND Polyvore Outfits-D
AUC(%) ACC(%) AUC(%) ACC(%)

Visual 90.77 57.45 85.95 52.93
Visual+Category (coarse) 90.85 59.60 85.98 54.64

Visual+Category (fine) 91.02 59.67 86.01 54.75
Textual 77.02 40.33 75.62 39.01

Textual+Category (coarse) 78.41 41.66 76.71 40.92
Textual+Category (fine) 79.75 42.11 76.95 41.15

Visual+Textual 92.55 61.05 89.17 57.55
All (coarse) 93.06 62.40 90.01 59.81

All (fine) 93.26 63.26 90.79 61.05

categories, and all the three modalities are used, respectively.
Table III shows the performance of our model with the
nine different modality combinations. As can be seen from
Table III, we observed that:

1) Visual outperforms Textual. This demonstrates that the
visual modality is more effective than the textual feature
for the outfit compatibility modeling.

2) Multi-modal Visual+Textual achieves better perfor-
mance than single-modal Visual and Textual. This in-
dicates that the visual and textual modalities of fashion
items complement each other toward the outfit compat-
ibility estimation.

3) Visual+Textual performs better than Visual+Category
and Textual+Category. This may be attributed to the
fact that the visual image and textual description deliver
more content-related features of fashion items than the
category information.

4) All surpasses Visual+Textual, indicating that incorporat-
ing the category information as one essential modality
does improve the model performance.

5) The methods with fine-grained categories perform better
than those with coarse-grained categories. This may be
due to the fact that fine-grained categories provide more
detailed information on fashion items, which facilitates
outfit compatibility modeling.

To gain an intuitive understanding of the impact of the
multi-modal integration, we showed several results obtained
by MOCM-MGL with different modality combinations (i.e.,
Visual, Textual, and All) on the FITB task in Figure 4. We
found that only considering a single modality of fashion
items may lead to incorrect choices. For instance, in the first
example, Textual chooses the wrong answer d. This may be
due to the fact that the textual description of the answer d and
that of the given gloves shares the same color, i.e., “black”.
Nevertheless, further incorporating the visual modality, the
method All gives the correct answer c. Regarding the third
example, Visual fails to give the correct answer, while All
does. This makes sense, as the textual description of the
ground truth answer c shares the same pattern with the given
striped hoodie. These examples demonstrate the necessity
of incorporating the complementary multi-modal information
towards outfit compatibility modeling.
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Fig. 4. Comparison of Visual, Textual, and All on the FITB task. The black, green and red bold fonts represent the category information of fashion items,
true chosen, and false chosen, respectively. The items highlighted in the green boxes are the ground truth.

E. Hyper-parameter Discussion (RQ4)

In this section, we examined how the number of propagation
steps K, the number of convolutional layers of Resnet-18 used
for visual encoding (i.e., L in Eqn. (2)), and the number of
composing items affect the performance of our method.

To explore the impact of the number of propagation steps,
we evaluated our model’s performance on two tasks with
two datasets by changing K from 1 to 5 with a step of
1. As shown in Figure 5, our model achieves the optimal
performance when K is 4. This suggests that it is necessary
to propagate several runs so that the fashion items can absorb
the neighbor compatibility information thoroughly at different
levels. Moreover, when K is higher than 4, the performance
drops. One possible reason is that superfluous information
propagation might introduce more noise into the node rep-
resentations, therefore leading to a negative effect.

We then studied the influence of the number of convolu-
tional layers of Resnet-18 used for visual encoding, i.e., L in
Eqn. (2), on the model performance. In particular, we varied
the number of convolutional layers used for visual encoding
from 1 to 4. Specifically, L = 1 indicates that we only used
the output of the final layer conv5 x of Resnet-18 for visual
encoding, while L = 2 refers to that we used the output of
the final two layers (i.e., conv4 x, and conv5 x) of Resnet-
18. The cases of L = 3 and L = 4 can be similarly derived.
In a sense, the larger the L, the shallower layers’ output
would be incorporated. Figure 6 shows the performance of our
model on the two tasks with the two datasets. As can be seen
from Figure 6, the model’s performance grows with integrating
more convolutional layers’ output, which indicates that each

convolutional layer has its contribution to boosting the visual
encoding. The possible reason is that the shallow layers can
capture the low-level visual features of the item, while the
deep ones can capture the high-level features, both of which
benefit the visual encoding of fashion items and hence boost
the outfit compatibility estimation performance.

To gain deeper insights, we examined the performance of
our proposed model regarding outfits with different numbers
of composing items. In particular, the testing set is divided
according to the number of fashion items, ranging from 2 to 8.
Figure 7 shows the performance of our proposed method with
different testing configurations. As can be seen, our method
performs well in all settings, verifying the effectiveness of our
method to handle outfit compatibility modeling with different
composing item numbers. In addition, our method performs
better for outfits with multiple (i.e., more than 2) fashion items
compared to those with two fashion items. This may be due
to that the benefit of modeling the comparability between two
items with a graph is limited.

V. CONCLUSION AND FUTURE WORK

In this work, we present a multi-modal outfit compatibil-
ity modeling scheme with modality-oriented graph learning,
named MOCM-MGL, which fully exploits the visual, textual,
and category modalities with GCN. Different from previous
work, we treat the category information of fashion items
as a unique and comparable modality to the visual and
textual modalities. In addition, the proposed MOCM-MGL
jointly unifies the intra-modal and inter-modal compatibility
relation among fashion items. Extensive experiments have
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(a) Polyvore Outfits-ND. (b) Polyvore Outfits-D.
Fig. 5. Effect of the number of propagation steps, i.e., K, on Polyvore Outfits-
ND and Polyvore Outfits-D datasets.

(a) Polyvore Outfits-ND. (b) Polyvore Outfits-D.
Fig. 6. Effect of the number of convolutional layers of ResNet-18 i.e., L, on
Polyvore Outfits-ND and Polyvore Outfits-D datasets.

Fig. 7. Performance of our proposed method regarding outfits with different
number of composing items on Polyvore Outfits-ND and Polyvore Outfits-D
datasets.

been conducted on the Polyvore Outfits-ND and Polyvore
Outfits-D datasets. The experimental results demonstrate the
superiority of MOCM-MGL, suggesting that employing a
modality-oriented GCN to propagate the intra-modal and inter-
modal compatibility relation among fashion items is helpful
to boost the model performance. In addition, integrating the
multi-modal information of fashion items greatly improves
the outfit compatibility estimation performance. One limitation
of our work is that we currently ignore the attribute context
of fashion items in the outfit compatibility modeling. In the
future, we plan to take the attribute context of fashion items
into account to boost the model performance.
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