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Due to the complex and dynamic environment of social media, user generated contents (UGCs) may in-

advertently leak users’ personal aspects, such as the personal attributes, relationships and even the health

condition, and thus place users at high privacy risks. Limited research efforts, thus far, have been dedicated

to the privacy detection from users’ unstructured data (i.e., UGCs). Moreover, existing efforts mainly focus

on applying conventional machine learning techniques directly to traditional hand-crafted privacy-oriented

features, ignoring the powerful representing capability of the advanced neural networks. In light of this, in

this article, we present a fine-grained privacy detection network (GrHA) equipped with graph-regularized

hierarchical attentive representation learning. In particular, the proposed GrHA explores the semantic corre-

lations among personal aspects with graph convolutional networks to enhance the regularization for the UGC

representation learning, and, hence, fulfil effective fine-grained privacy detection. Extensive experiments on

a real-world dataset demonstrate the superiority of the proposed model over state-of-the-art competitors

in terms of eight standard metrics. As a byproduct, we have released the codes and involved parameters to

facilitate the research community.

CCS Concepts: • Information systems→ Retrieval tasks and goals; • Security and privacy→ Privacy

protections;

Additional KeyWords and Phrases: Fine-grained privacy detection, graph convolutional networks, hierarchi-

cal attention mechanism

This work is supported by the National Key Research and Development Project of New Generation Artificial Intelligence,

No.:2018AAA0102502; the National Natural Science Foundation of China, No.:61702300, No.:61772310, and No.:U1936203;

the Shandong Provincial Natural Science Foundation, No.:ZR2019JQ23; the Shandong Provincial Key Research and Devel-

opment Program, No.:2019JZZY010118; the Innovation Teams in Colleges and Universities in Jinan, No.:2018GXRC014.

Authors’ addresses: X. Chen, X. Song, and L. Nie, Shandong University, No. 72 Binhai Road, Jimo, Qingdao, Shandong

Province, 266237, China; emails: {cxlicd, sxmustc, nieliqiang}@gmail.com; R. Ren, Renmin University of China, No. 59

Zhongguancun Street, Haidian District, Beijing, 100872, China; email: reyon.ren@ruc.edu.cn; L. Zhu, Shandong Normal

University, No. 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250358, China; email: leizhu0608@gmail.com;

Z. Cheng, Qilu University of Technology (Shandong Academy of Sciences), No. 19 Keyuan Road, Lixia District, Jinan,

Shandong Province, 250014, China; email: jason.zy.cheng@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1046-8188/2020/09-ART37 $15.00

https://doi.org/10.1145/3406109

ACM Transactions on Information Systems, Vol. 38, No. 4, Article 37. Publication date: September 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3406109


37:2 X. Chen et al.

ACM Reference format:

Xiaolin Chen, Xuemeng Song, Ruiyang Ren, Lei Zhu, Zhiyong Cheng, and Liqiang Nie. 2020. Fine-Grained

Privacy Detection with Graph-Regularized Hierarchical Attentive Representation Learning. ACM Trans. Inf.

Syst. 38, 4, Article 37 (September 2020), 26 pages.

https://doi.org/10.1145/3406109

1 INTRODUCTION

Inmodern society, online socialmedia has become a popular platform for social interactions, where
people can build up relationships, broadcast exciting news, and even share their personal lives. Ac-
cording to [30], information pertaining to users themselves accounts for up to 66% of the entire
user generated contents (UGCs). However, the massive amount of personal data may put users
at high privacy risks. Figure 1 illustrates two real-world UGCs that reveal the users’ contact and
occupation information, respectively.1 Although users can manually check their historical UGCs
to alleviate the problem of privacy leakage, this strategy suffers from the following two key lim-
itations. (1) Manual check is rather time-consuming, especially for users who have contributed
tremendous UGCs. And (2) even though the users manage to check their posts manually, they may
not be acutely aware of the privacy leakage [71]. Therefore, automatic privacy detection on social
media does merit our special attention. Notably, privacy leakage is highly subjective, as different
users may have different privacy perceptions. Therefore, we focus on the potential privacy detec-
tion from the users’ historical posts, and provide the detection results to users for further process.
As a matter of fact, users’ growing concern regarding the privacy leakage on social media has at-

tracted many researchers’ attention [23, 73, 74, 76]. They mainly explored the well-structured data,
such as users’ profiles [74] and privacy settings [23]. Despite the great success achieved by these
efforts, most of them overlook the unstructured-data (i.e., UGCs), whereby the information is more
abundant and the privacy leakage issue is more prominent. Although some pioneer studies [13, 15,
55, 56, 73, 83] have tried to tackle the problem of privacy leakage detection from unstructured-data,
they mainly resort to shallow learning techniques based on a set of hand-crafted privacy-oriented
features. Moreover, they put their efforts on the coarse binary classification (i.e., private or not) of
UGCs, which is suboptimal near enough to solve the practical task of privacy leakage detection.
Therefore, in this work, we aim to explore the potential of incorporating deep learning techniques,
which have shown compelling success in various machine learning tasks, in the context of fine-
grained privacy detection.
In this work, we aim to comprehensively investigate the practical problem of fine-grained pri-

vacy detection over UGCs, where the personal aspects spanning from personal attributes (e.g.,
occupation and age) to life milestones (e.g., get pregnant and graduation) are detected for each user
post. However, fine-grained privacy detection based on UGCs is non-trivial due to the follow-
ing challenges: (1) In a sense, a UGC can be treated as a document with several sentences, each of
which consists of a few words. Different sentences and even words may have different confidences
pertaining to revealing the users’ privacy. For example, given the tweet “@user excuse me for dis-
turbing you. I am a student of master degree majoring in physics, and want to go to university of
Tokyo for PHD,” it is apparent that the second sentence, especially the words “master degree,” de-
livers more information regarding the user’s education background. Therefore, how to accurately
capture confidences of different words and sentences in privacy detection, and, hence, boost the
performance of fine-grained privacy detection poses the main challenge for us. (2) Personal as-
pects are usually not independent but correlated due to their semantic correlations. For example,

1For the privacy concern, we replaced the sensitive information, like the names in the original tweets, with the general

references such as “user1” and “XXXXX”.
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Fig. 1. Examplars of UGCs that reveal the users’ contact and occupation information, respectively.

Fig. 2. Illustration of the proposed scheme for fine-grained privacy detection from UGCs. Aiming to learn
that latent space that can characterize the correspondence between the UGC and its labels, namely, the
personal aspects it reveals, GrHA is comprised of two key components: hierarchical attentive representation
learning and graph-based semantic regularization.

given a tweet that reveals the user’s personal aspect “Health condition,” it is more likely that the
tweet also indicates the user’s personal aspect “Treatment” rather than the aspect “Graduation.”
Accordingly, modeling such semantic correlations among personal aspects is a tough challenge.
And (3) how to utilize the semantic correlations among personal aspects to regularize the latent
representation learning of UGCs and thus fulfil the fine-grained privacy detection in an end-to-end
fashion is another crucial challenge.
To address the aforementioned challenges, we present a fine-grained privacy detection network

with Graph-regularizedHierarchical Attentive representation learning, GrHA for short. As illus-
trated in Figure 2, GrHA aims to learn a latent space that is capable of characterizing the corre-
spondence between the UGC and its labels, i.e., the personal aspects it reveals. In particular, the
proposed GrHA consists of two key components: hierarchical attentive representation learning and
graph-based semantic regularization. As for the hierarchical attentive representation learning, we
devise a neural networkwith two layers of attentionmechanisms, corresponding to distinguish the
confidences of different words and sentences in privacy detection, respectively. Pertaining to the
graph-based semantic regularization, we employ the Graph Convolutional Networks (GCNs) [36]
to explore the semantic correlations that reside in personal aspects. Ultimately, the fine-grained
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privacy detection is fulfilled by encoding the graph-based semantic regularization into the hierar-
chical attentive representation learning in an end-to-end manner.
Our main contributions can be summarized in threefold:

—We present a fine-grained privacy detection network, GrHA,which can seamlessly integrate
the latent representation learning for UGCs and the graph-based semantic regularization
in an end-to-end fashion. In addition, we introduce a hierarchical attentive network to dis-
tinguish the word-level and sentence-level confidences, and, hence, accurately capture the
privacy indicators of each UGC.

—To the best of our knowledge, we are among the first to incorporate the graph-based seman-
tic correlations among personal aspects as a regularization toward the latent representation
learning for UGCs in the context of fine-grained privacy detection.

—Extensive experiments conducted on the real-world dataset demonstrate the superiority of
our proposed model over the state-of-the-art methods. As a byproduct, we have released
the codes and involved parameters to facilitate other researchers.2

In the remainder of this article, we briefly review the related work in Section 2. Section 3 formu-
lates the research problem and details our proposed model. Experimental setup and result analyses
are presented in Section 4. We finally conclude our work and discuss future research directions in
Section 5.

2 RELATEDWORK

Our work is related to the studies of privacy analyses, representation learning, and graph convo-
lutional networks.

2.1 Privacy Analyses

In the last few years, increasing research efforts have been dedicated to the privacy analysis over
social media, especially based on users’ profiles [4, 14, 16, 29, 32, 48, 50, 64, 74] and users’ privacy
settings [23, 52, 66, 81]. For example, Song et al. [74] studied the risk of being re-identified from
users’ trajectory recordswith a humanmobility dataset. Han et al. [23] studied the privacy issues in
the context of people search by simulating different privacy settings in a public social network. Due
to the concern of the privacy leakage over unstructured UGCs, Tran et al. [76] presented a binary
classification framework with Convolutional Neural Networks (CNN) [37] to determine whether a
given photo is private. Likewise, Mao et al. [55] built automatic binary classifiers to detect sensitive
vacation tweets, drunk driving tweets, and disease tweets, respectively. Moreover, Li et al. [46]
proposed an approach to preserve the user’s privacy by explicitly obscuring the important author
characteristics, while keeping the learned representations invariant to these attributes.
However, the above research efforts on privacy analyses mainly focus on the coarse-grained

privacy detection, making the results less meaningful. Toward this end, Song et al. [73] proposed a
taxonomy-guided multi-task learning model based on several hand-crafted privacy-oriented fea-
tures to predict which personal aspects are revealed in the posts, where a comprehensive taxon-
omy characterizing the user’s privacy is introduced. Although the pioneer studies have obtained
remarkable achievements, they mainly utilize the shallow learning methods together with a set
of hand-crafted privacy-oriented features. Beyond that, in this work, we focus on enhancing the
performance of fine-grained privacy detection by utilizing the deep learning techniques, where
the semantic correlations among personal aspects and the latent representation learning of UGCs
can be explored thoroughly.

2https://github.com/Fine-grainedPrivacyDetection/GrHA/.
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2.2 Representation Learning

As an active research topic, representation learning has long been striving for learning more ef-
fective representations for data rather than hand-crafted features, which has achieved remarkable
success in various tasks [22, 28, 34, 65, 72, 78, 84]. For example, Wang et al. [80] developed a semi-
supervised algorithm for short text clustering, where the latent representations for short sentences
are learned by a deep neural network model. In addition, Lai et al. [39] proposed a recurrent con-
volutional neural network to fulfil the task of text classification, where the contextual information
is learned by a bidirectional recurrent structure. Likewise, Lee et al. [41] employed the CNN to
learn the effective representation for each short text and, hence, tackled the problem of short-text
classification.
Although these studies have achieved compelling success, they all suffer from the limitation

of treating all the latent features or factors equally, but overlooking the different capabilities of
features in representation. Toward this end, Bahdanau et al. [2] introduced the general attention
mechanismworking on identifying the important words from auxiliary textual information to pro-
vide more precise representations for data. Since then, many derivatives of the attention mecha-
nism have been proposed to solve various tasks from the natural language processing domain [19,
21, 27, 68, 69, 85, 87] and the computer vision domain [61–63, 79, 90]. To be specific, in the natural
language processing domain, Yin et al. [87] presented three attention schemes to incorporate the
mutual influence between sentences into CNNs to learn the sentence representations. In addition,
Seo et al. [69] combined the local and global attentions over review text to derive the better in-
terpretable representations for users and items, respectively. Moreover, Yang et al. [85] introduced
two levels of attention mechanisms to tackle the problem of document classification. Besides, in
the computer vision domain, Peng et al. [62] proposed a modality-specific cross-modal similarity
measurement approach, which constructs independent semantic spaces for different modalities,
where the modality-specific characteristics can be well explored with attention mechanism. In
addition, Zhao et al. [90] introduced a pyramid feature attention network for image saliency de-
tection, which employs both the spatial attention and channel-wise attention to enhance the low-
level spatial structural features and the high-level context features, respectively. What is more,
Peng et al. [63] established a spatial-temporal attention model for video classification to jointly
capture the video evolutions both in spatial and temporal domains.
Although the representation learning has shown remarkable performance in plenty of tasks,

limited efforts have been dedicated to the task of fine-grained privacy detection. Toward this end,
in this work, we employ a hierarchical attentive network to distinguish the confidences of different
words and sentences in delivering users’ personal aspects, and, hence, fulfil the task of fine-grained
privacy detection on social media.

2.3 Graph Convolutional Network

As an extension of the convolutional network, graph convolutional network, introduced by Bruna
et al. in [6], works on exploiting the adjacency matrix or the Laplacian matrix that character-
izes the graph structure, and, hence, capturing the correlations among different nodes. Due to its
powerful capability in exploring the correlation propagation between nodes, recent years have
witnessed increasing research attention from both the natural language processing domain [3, 36,
42, 49] and the computer vision domain [9, 20, 25, 26] has been paid to the graph convolutional
network. For example, Kipf and Welling [36] introduced a graph-based semi-supervised learning
framework for node classifications, where the label information is smoothed over the graph via a
Laplacian regularization term in the loss function. In addition, Peng et al. [60] proposed a graph-
CNN based deep learning model for text classification, where the GCN is employed to exploit the
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Table 1. Summary of the Main Notations

Notation Explanation
T The set of training labeled tweets.
C The set of personal aspects.
yi The label vector of the tweet ti .

x tm The t-th word in them-th sentence of the tweet.

htm The hidden representation of the t-th word in them-th sentence of the tweet.

cw The word-level attention context vector.

α tm The confidence of the t-th word in them-th sentence of the tweet.

km The attentive representation of them-th sentence of the tweet.
hm The hidden representation of them-th sentence of the tweet.
cs The sentence-level attention context vector.
βm The confidence of them-th sentence of the tweet.
vi The attentive latent representation of the tweet ti .
hj The latent embedding of the j-th personal aspect.
A The predefined conditional semantic correlation matrix.
zj The final representation of the j-th personal aspect.
Z The formal latent representation of personal aspects.

word graph. Apart from the natural language processing tasks, Chen et al. [9] presented a multi-
label image classification model, where the GCNs are employed to derive a set of inter-dependent
object classifiers based on a directed graph with each node representing an object. In a sense, these
studies have demonstrated the superiority of GCNs in learning the correlations among different
nodes, which exactly inspires us to resort to GCNs for the semantic correlation modeling among
different personal aspects.

3 METHODOLOGY

In this section, we first formulate the research problem of fine-grained privacy detection and then
detail the proposed GrHA, which comprises two key components: hierarchical attentive represen-
tation learning and graph-based semantic regularization.

3.1 Problem Formulation

Let us first declare some notations. In particular, we use bold uppercase letters (e.g., X) and bold
lowercase letters (e.g., x) to representmatrices and vectors, respectively.We employ nonbold letters
(e.g., x ) to represent scalars and Greek letters (e.g., γ ) as parameters. If not clarified, all vectors are
in column forms. ‖A‖F denotes the Frobenius norm of matrix A. The main notations used in this
article are summarized in Table 1.
Without loss of generality, we specifically investigate the privacy leakage of tweets in Twit-

ter, one of the most popular social media platforms, while the cases of other social media can
be explored in the same manner. In a sense, the privacy detection can be cast as a multi-label
classification problem, as each tweet can reveal multiple personal aspects of the user simulta-
neously. Suppose we have N tweets T = {t1, t2, . . . , tN } labeled by a set of personal aspects
C = {c j |j = 1, 2, . . . ,Q }, where c j represents the j-th personal aspect and Q is the total number of

personal aspects. Let Y = {y1, y2, . . . , yN }T ∈ RN×Q denote the corresponding label matrix, where
yi = (y1,y2, . . . ,yQ ) ∈ {1, 0}Q represents the label vector for the i-th tweet, indicating the personal
aspects revealed by the tweet.
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In this work, we aim to learn an effective representation vi ∈ RD for the i-th tweet via a hi-
erarchical attentive neural network, regularized by a graph-based semantic correlation modeling
network, where a latent representation zj ∈ R1×D for each personal aspect c j can be obtained. D
is the dimension of the latent space. Based on vi and zj , we can thus measure the correspondence
between the tweet ti and the personal aspect c j .

3.2 Hierarchical Attentive Representation Learning

In fact, a tweet can be treated as a document with several sentences, and each sentence comprises
a sequence of words. Obviously, different sentences may play different roles in revealing the user’s
privacy. Moreover, even words in the same sentence can have different levels of confidences per-
taining to delivering the user’s personal information. For example, given the tweet “The pictures
on my wall are real. I graduated from the University of North Texas with Bachelors in Music and Eng-
lish,” we can notice that the second sentence, especially the words “graduated,” “university,” and
“bachelors,” is most informative toward the privacy leakage of the user’s education background.
Therefore, to distinguish the privacy indicators and, hence, enhance the representation learning of
tweets, we propose to utilize the hierarchical attentive neural network to encode the confidences
of different words and sentences, adaptively.
In particular, suppose each tweet consists of M sentences, S = {s1, s2, . . . , sM }, and the m-th

sentence sm is comprised of Pm words, sm = {x1m ,x2m , . . . ,x
Pm
m }. Following the bottom-up strategy,

we first learn the representation for each sentence sm with an attentive word encoder, and then
derive that for the tweet based on an attentive sentence encoder.

3.2.1 Attentive Word Encoder. Due to the remarkable performance of the bidirectional gated
recurrent units (BiGRU) in various natural language process tasks [2, 10, 33, 89], we employ it to
encode words in the sentence sm . One advantage of BiGRU lies in the fact that it can comprehen-
sively summarize the sentence information from both directions by a forward GRU that reads the

sentence from the word x1m to word xPmm , as well as a backward GRU that scans from the word xPmm

to word x1m . Let
−→
h t
m and

←−
h t
m be the t-th hidden state of the forward GRU and the backward GRU,

respectively. Here, we only briefly give the derivation of
−→
h t
m , as

←−
h t
m can be obtained similarly.

According to BiGRU, we calculate
−→
h t
m as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut = σ (Wu [
−→
h t−1
m , e

t
m] + bu ),

rt = σ (Wr [
−→
h t−1
m , e

t
m] + br ),

ct = tanh(Wc [rt �
−→
h t−1
m , e

t
m] + bc ),−→

h t
m = ut � ct + (1 − ut ) �

−→
h t−1
m ,

(1)

where ut and rt are the update gate and the reset gate, respectively, and ct is the status of the
memory cell.Wu ,Wr , andWc are the weight matrices, while bu , br , and bc are the bias vectors. �
stands for the element-wise operation, andσ (·) refers to the sigmoid activation function. etm ∈ RDe

is the embedding ofwordx tm , which can be pre-obtainedwith the help of thewidely-usedword2vec
tool [24, 40].De denotes the dimension of theword embedding. Eventually, we can obtain the latent

representation htm for the word x tm by concatenating
−→
h t
m and

←−
h t
m as follows:

htm = [
−→
h t
m ,
←−
h t
m]. (2)

Traditionally, BiGRUwould represent the sentence sm as the mean of all htm ’s, which apparently
overlooks the different confidence levels of words in disclosing the individual’s privacy. Therefore,
to distinguish informative indicators in the privacy leakage, we adopt the attentionmechanism [2],
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which has been proven to be effective in many machine learning tasks, such as the text summa-
rization [70], multimedia recommendation [8], and entity representation [82]. In particular, we
assign the confidences of different words as follows:

⎧⎪⎨⎪⎩
utm = tanh(Wwh

t
m + bw ),

α tm =
exp(cTwutm )∑
t exp(c

T
wutm )
,

(3)

where the weight matrixWw and bias vector bw are the to-be-learned layer parameters. α tm refers
to the normalized confidence of the word x tm , which measures the similarity between the latent
representation utm of the word x tm and a context vector cw . To be specific, the word-level attention
context vector cw can be treated as the latent representation of the reference query “is it an infor-
mative word toward the privacy leakage,” which can be automatically learned during the training
process. Thereafter, we compute the final representation km for the sentence sm as the weighted
sum of word representations htm ’s:

km =
∑

t

α tmh
t
m . (4)

3.2.2 Attentive Sentence Encoder. Similar to the attentive word encoder, we also employ BiGRU
to encode sentences and learn the representation for the tweet as follows:

−→
hm =

−→д1 (km ),m ∈ {1, 2, . . . ,M }, (5)

where
−→
hm is them-th hidden state of the forward GRU −→д1, while

←−
hm is that of the backward GRU

←−д2. Similarly, we obtain the latent representation of the sentence sm as hm , which can be calculated

as the concatenation of the
−→
hm and

←−
hm , i.e., hm = [

−→
hm ,
←−
hm].

To distinguish the informative sentences toward the user’s privacy leakage, we adopt the atten-
tion mechanism again as follows:

⎧⎪⎨⎪⎩
um = tanh(Wshm + bs ),

βm =
exp(cTs um )∑
m exp(cTs um )

,
(6)

where βm is the normalized confidence of the sentence sm . cs refers to the sentence-level attention
context vector, representing the query “is it an informative sentence toward the privacy leakage.”
Ultimately, we represent the i-th tweet with vi ∈ RD as follows:

vi =
∑

m

βmhm . (7)

3.3 Graph-based Semantic Regularization

In a sense, we aim to learn a latent space, capable of characterizing the correspondence between
the UGC and its labels, i.e., the personal aspects it reveals. In light of this, the UGC’s labels can be
employed to regularize the representation learning of each UGC. As a matter of fact, a tweet tends
to reveal the user’s multiple personal aspects simultaneously, due to their semantic correlations.
For example, given a tweet that indicates the user’s personal aspect “status change” (e.g., get mar-
ried or become pregnant), it is more likely to leak the user’s “gender” rather than his/her “home
address.” Toward this end, we argue that the semantic correlations among personal aspects should
be taken into consideration to enhance the regularization for the UGC representation learning.
To model the semantic correlations among personal aspects, a natural way is to utilize the con-

ditional co-occurrence between personal aspects. In particular, we adopt the directed graph to
characterize the conditional co-occurrence among personal aspects. As shown in Figure 3, each
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Fig. 3. Illustration of the directed graph reflecting the conditional co-occurrence between personal aspects.
Each node represents a personal aspect, and the edge stands for the conditional co-occurrence probability
between the two corresponding personal aspects. The thickness of the edge indicates the magnitude of the
conditional probability. Taking “Treatment” (c1) and “Health condition” (c2) as an example, the edge from
c1 to c2 is thicker than that from c2 to c1, which means P (c2 |c1) > P (c1 |c2). “T”: Tweet.

node of the graph refers to a personal aspect, and the edge from the node c j to ck reflects the con-
ditional co-occurrence probability that a UGC will reveal the user’s personal aspect ck if it reveals
the personal aspect c j .

In particular, we define the conditional co-occurrence probability as P (ck |c j ) =
P (ck ,c j )
P (c j )

, where

P (ck , c j ) =
n (j,k )
N

, and n(j,k ) denotes the number of UGCs that simultaneously reveal personal

aspects c j and ck . P (c j ) =
n (c j )
N

represents the probability that a UGC will reveal the personal
aspect c j , where n(c j ) is the number of UGCs labeled with the personal aspect c j . Accordingly,
we define the conditional co-occurrence adjacent matrix P = {p1, p2, . . . , pQ }T ∈ RQ×Q , where

pj = (p1j ,p
2
j , . . . ,p

Q
j ) and pkj = P (ck |c j ). Notably, the conditional co-occurrence adjacent matrix

P is asymmetric, as usually pkj � p
j

k
. For example, as shown in Figure 3, given the four tweets

that reveal five personal aspects in total, we can calculate that P (c1, c2) = 1/4, P (c1) = 1/4, and
P (c2) = 2/4 = 1/2. Accordingly, we have p21 = 1 and p12 = 1/2, where p21 � p

1
2.

To alleviate the noisy co-occurrence caused by the sparse real-world dataset, inspired by [9], we
binarize the conditional co-occurrence adjacent matrix P with a threshold τ as follows:

p̂kj =
⎧⎪⎨⎪⎩
0, if pkj < τ ,

1, if pkj � τ .
(8)

Regarding the diagonal elements of P, one naive strategy is to set p jj = 0 to avoid the self-loops.

However, in this manner, the representation of each personal aspect would be completely deter-
mined by its co-occurrence distribution with all the other personal aspects, where the own feature
of each personal aspect would be neglected. This makes certain personal aspects (e.g., “Education”
and “Graduation”) that share much similar co-occurrence distribution indistinguishable. There-
fore, we further revise p̂kj to akj as follows:

akj =
⎧⎪⎨⎪⎩

φ∑Q
x=1p̂

k
j

, if j � k,

1 − φ, if j = k,
(9)
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Fig. 4. Workflow of the proposed GrHA network, which consists of two key components: the hierarchical
attentive representation learning and the graph-based semantic regularization.

where akj denotes the conditional semantic correlation between the personal aspects ck and c j , and
φ is a tradeoff parameter that determines the tradeoff between the personal aspect itself and its
correlated personal aspects. In a sense, in this way, we allocate a fixed weight to each personal
aspect itself but flexible weights to its correlated personal aspects based on their conditional co-
occurrence distribution. In particular, when φ → 1, the own feature of each personal aspect tends
to be ignored, while those of its correlated personal aspects would be disabled when φ → 0. Ulti-
mately, we obtain the final conditional semantic correlation matrix A = {a1, a2, . . . , aQ }T ∈ RQ×Q ,

where aj = (a1j ,a
2
j , . . . ,a

Q
j ) denotes the conditional semantic correlation vector for the j-th per-

sonal aspect.
Based on the aforementioned semantic correlation matrix, we then employ GCNs to explore the

latent semantic-oriented representation for each personal aspect due to its conspicuous perfor-
mance in various tasks, such as relation classification [47], text classification [36], and machine
translation [3]. One advantage of GCNs is that they can update the personal aspect’s representa-
tion according to the properties of its correlated personal aspects [9]. Specifically, given the con-
ditional semantic correlation matrix A, each GCN layer works as a nonlinear transformation as
follows:

H(l+1) = д(AH(l )W(l ) ), l ∈ {0, 1, . . . ,L − 1}, (10)

where L refers to the total number of GCN layers, andW(l ) ∈ Rdl×d (l+1) is the to-be-learned trans-
formation matrix for the l-th layer. д(·) stands for a non-linear operation, where we adopt the
LeakyReLU [53]. dl and d (l+1) are the embedding dimensions of the l-th and (l + 1)-th layers, re-

spectively. H(l ) = {h(l )
1 , h

(l )
2 , . . . , h

(l )
Q
}T ∈ RQ×dl , where h(l )

j is the latent embedding of the j-th per-

sonal aspect at the l-th layer. In particular, h
(0)
j is the initial embedding vector of the j-th personal

aspect, which is initialized randomly and keeps updating at each following layer. Ultimately, we
treat the output of the L-th layer as the final latent representation of each personal aspect, namely,

zj = h
(L)
j ∈ R1×dL , where we set dL = D. Simultaneously, we are able to obtain the formal latent

representation of personal aspects, i.e., Z = H(L) = {z1, z2, . . . , zQ }T.
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ALGORITHM 1: Fine-grained Privacy Detection Network.

Input:T , Y, A, λ, τ , φ.

Output: Predicted scores of every personal aspect ŷ ji .

1: Initialize neural network parameters Θ.
2: Initialize the latent embedding matrix of personal aspects H(0) .
3: repeat:
4: Draw ti from T .
5: Compute the latent word representations [h1m , . . . , h

Pm
m ] according to Equations (1) and

(2).

6: Compute the word confidences [α1
m , . . . ,α

Pm
m ] and the attentive sentence representation

km according to Equation (3).
7: Compute the latent sentence representations [h1, . . . , hM ] according to Equation (5).
8: Compute the sentence confidences [β1, . . . , βM ] and the attentive tweet representation vi

according to Equation (6).
9: Learn the latent label representation zj according to Equation (10).

10: Compute the correspondence score ŷ ji between the tweet ti and the personal aspect c j
according to Equation (11).

11: Update Θ according to Equation (12).
12: until : Objective value converges.

3.4 Optimization

To facilitate the end-to-end semantic regularization on the latent representation learning for

UGCs, we define the corresponding score ŷ ji between the i-th UGC and the j-th personal aspect c j
below:

ŷ ji = zjvi . (11)

Ultimately, adopting the cross-entropy loss [44], we thus reach the final objective function for
fine-grained privacy detection as follows:

L = 1

N

N∑

i=1

Q∑

j=1

[
− y ji loд

(
σ
(
ŷ ji
))
−
(
1 − y ji

)
loд
(
1 − σ

(
ŷ ji
))]
+ λ‖Θ‖2F , (12)

where λ is the non-negative hyperparameter. The last term is designed to avoid overfitting and

Θ refers to the set of parameters (e.g., Wu , bu , Wr , br , Wc , bc , Ww , bw , Ws , bs , and W(l )) of the
proposed end-to-end network.
As to the optimization of the parameters Θ in the proposed network, we adopt the back-

propagation strategy, where the core step is to calculate the partial derivative with respect to

these parameters. Here, we only introduce the calculation for ∂L
∂Ws

as an example, while the other

partial derivatives can be solved in a similar fashion. We can calculate ∂L
∂Ws

as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂vi
= 1

N

∑N
i=1

∑Q
j=1

(
ezj vi

1+ezj vi
− y ji
)
zj ,

∂vi
∂βm
= hm ,

∂βm
∂um
=

exp

(
cTs um

) [∑
n�m exp

(
cTs un

)
cs

]
[∑

m exp

(
cTs um

)] 2 .

(13)

As ∂um
∂Ws

can be derived from um = tanh(Wshm + bs ), we can easily access ∂L
∂Ws

. The network is

optimized in mini batches by the Adam optimizer [35], which is a variant of Stochastic Gradi-
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Table 2. The Distribution of Tweets with Respect to
the Number of Personal Aspects with Which

They Are Associated

#Personal aspects 1 2 3 4 5
#Tweets 8,546 2,215 533 65 9

ent Descent (SGD) [5] with adaptive moment estimation. The workflow of GrHA is illustrated in
Figure 4, while the procedure is summarized in Algorithm 1.

4 EXPERIMENTS

To evaluate the proposed model, we conducted extensive experiments on the real-world dataset
by answering the following research questions:

—RQ1. Does our GrHA outperform state-of-the-art methods?
—RQ2. How does the hierarchical attention mechanism affect the performance of GrHA?
—RQ3.What is the contribution of the graph-based semantic regularization?
—RQ4. How about the sensitivity of GrHA with respect to certain important hyperparame-
ters?

4.1 Data Preprocessing

According to [73], it is intractable to build the large-scale dataset for fine-grained privacy detection
from unstructured UGCs, which leads to the lack of public available datasets. We thus conducted
our experiments only on the public real-world dataset introduced in [73], which consists of 11,368
tweets annotated with 32 personal aspects. It is worth noting that each tweet may be labeled with
multiple aspects, as it may reveal more than one personal aspect of the user. Table 2 shows the
distribution of tweets with the number of personal aspects they are associated with. On average,
each tweet has 1.31 personal aspects.
To get a better understanding of the dataset we adopted, we listed several tweet examples in

Table 3. As we can see, users’ occupations are mainly revealed by tweeting their new jobs, their
thoughts about their occupations, or merely self-promotion. Users’ gender information can be em-
bedded in their roles in relationships (e.g., daughter and girlfriend) or the distinct gender character-
istic (e.g., period for women). In addition, users’ current locations are usually discussed with shar-
ing their current feelings or the events they are joining, while users’ places-to-go can be tweeted
when they are preparing for the trips, or expressing their eagerness to trips. Users may mention
their age more when their birthdays are coming. Last but not least, although certain neutral state-
ments may also talk about “career promotion,” “my home address” and other personal aspects,
they are usually revealing others’ privacy or providing no detailed personal information.
To boost the performance of our model on the real-world dataset, we first sanitized the noisy

tweets with the following steps: (1)We replaced the Internet slang with their corresponding formal
expressions by the Internet Slang Dictionary & Translator.3 (2) We performed the lemmatization
using the Stanford NLP tool [54] to link word derivatives. And (3) we corrected words that contain
repeated sequential letters (e.g., “coooooool” is changed to “cool”).

3http://www.noslang.com/.
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Table 3. Examples of Some Personal Aspects

Personal Aspect Examples

Occupation
“Just got a job other at an eye laser clinic debating if I should take
it.”
“Working at plaza is gonna get me so much more money than what
I get now. I’m so excited!!”
“I used to be a swimmer...now I’m a coach. And I love torturing my
kids. #evilmutantswimcoach”

Gender
“I seriously going to buy tacos, but the laziness took over. I am my
father’s daughter.”
“My girlfriend broke up with me...”
“The worst thing you do is piss me off while I’m on my period.”

Current location
“Get to stay in Washington DC tonight...too bad I have to sleep in
the airport.”
“At the Bell Performing Arts Centre for the LTS Jazz Band Concert.
#sweet”
“She told the doctor tomorrow is my birthday. I can’t be in the
hospital.”

Place to go
“In exactly one month I will be headed to the airport to depart for
Cambodia... #WhatIsLife”
“Good morning friends..preparing for my trip to Sweden..im driving
to Kiruna through Riksgrnsen and Abisko to Kiruna airport..”
“Going to SF this weekend for the Beenzino concert! I can’t wait to
get my picture with.”

Age
“It’s still sinking in how next month I’ll be 30.... Never married but
feel damn near divorced and no kids. Wow.”
“..when I told him I’m only 24.”
“Can it be June? so I can be drunk off my ass in Vegas for my 21st
birthday.”

Neutral statement
“Chelsea look like they got promoted last season.”
“Do you want my home address and social security too?”

4.2 Experiment Settings

For a given tweet ti , based on ŷ ji ’s, we can generate a ranking list of all the personal aspects. As
it is essential to position all the true personal aspects in the top places, we selected the following
evaluation metrics.
Average Precision. Average precision assesses the overall effectiveness of the ranking list of

predicted aspects, which is widely used in information retrieval systems [57].
One-Error.One-Error stands for the average probability that the first predicted personal aspect

is not the ground truth [88].
S@K. S@K represents the mean probability that a correct personal aspect is captured within

the top K recommended aspects. In our experiment, we set K as 1, 3, and 5, respectively.
P@K. P@K stands for the proportion of correct aspects among the top K recommended results.

In our experiment, we set K as 1, 3, and 5, respectively.
Experimental results reported are the average values of the 10-fold cross-validation.We adopted

the grid search strategy to obtain the optimal values for the regularization parameter λ and tradeoff
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Fig. 5. Training loss and training evaluation metrics with respect to each epoch. For clarity, we only showed
the S@K and P@K , where K = 5.

parameters (i.e., τ and φ) of the semantic correlation matrix A among values {10r |r ∈ {−4, . . . ,-
1}}, [0.001, 0.01, 0.1], and [0.1, 0.9], respectively. Meanwhile, the mini-batch size, the number of
hidden units and the learning rate are searched in ranges of [30, 60, 90, 120], [50, 75, 100, 125], and
[0.0001, 0.001, 0.01, 0.1], respectively.Moreover, we fine-tuned the proposedmodel with 50 epochs,
and reported the performance on the testing set. In addition, we utilized TensorFlow to implement
our model and all the experiments are conducted over a server equipped with an NVIDIA Titan
X GPU. For optimization, we employed the adaptive moment estimation method [35] with the
learning rate 0.0006.
We first experimentally demonstrated the convergence of our algorithm. Figure 5 shows the

changes of the objective loss in Equation (12) and the training evaluation metrics with one run of
the algorithm. As we can see, the values first change rapidly and then tend to go steady at last,
which well validates the convergence of our model.

4.3 On Model Comparison (RQ1)

As a matter of fact, existing methods only focus on developing the hand-crafted privacy-oriented
features and employ the shallow learning methods to tackle the problem of privacy detection. To
validate the effectiveness of our GrHA for fine-grained privacy detection, we chose five state-of-
the-art (shallow learning) methods and developed three deep learning methods as baselines.
SVM. The first shallow learning baseline is SVM [11], which simply concatenates the privacy-

oriented features into a single vector and learns each personal aspect individually. We chose the
formulation with the kernel of radial-basis function [59] and implemented this method with the
help of a library for support vector machines (LIBSVM) [7].
MTL_Lasso.The second baseline is themulti-task learning (MTL)with Lasso [75], which imple-

ments the l1-penalization to the regression objective function. This method leaves out the semantic
correlations among personal aspects.
GO_MTL. The third baseline is the grouping and overlap in multi-task learning proposed in

[38], which is able to learn the semantic correlations among personal aspects from the data.
CMTL. The fourth baseline is the clustered multi-task learning (CMTL) [31, 58], which as-

sumes personal aspects can be clustered into several groups and those in one group can be learned
together.
TOKEN. The fifth baseline is the latent group MTL [73], which utilizes the predefined personal

aspect taxonomy to learn the group-sharing and aspect-specific latent features of personal aspects
simultaneously.
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TextRNN. Owing to the remarkable performance of TextRNN in text classification tasks [1,
51], we chose TextRNN [18] as one deep learning baseline. In particular, we employed Recurrent
Neural Networks (RNN) to obtain the latent representations for UGCs, and based on that utilized
the logistic regression [12] objective function to fulfil the task of fine-grained privacy detection.

TextCNN. Similarly, we selected the TextCNN model in [34] as our seventh baseline, where
we employed CNN to derive the latent representations of tweets. In the same manner, we utilized
the logistic regression as the loss function. Notably, both TextRNN and TextCNN overlook the
semantic correlations among different personal aspects.
D-TOKEN.Due to the excellent performance of TOKEN reported in [73], we introduced the last

end-to-end baseline D-TOKEN, which is an extension of TOKEN [73], where hand-crafted privacy-
oriented features are replaced by the representation automatically learned by our hierarchical
attentive network.
As five of the above baselines are shallow-learning methods, we chose the following common

hand-crafted privacy-oriented features [73] for them.

—LIWC. Linguistic Inquiry andWord Count (LIWC) features have been widely used to char-
acterize a given document from the content perspective [67]. The key component of LIWC
is a dictionary, comprising the mappings from words to a set of predefined categories.4

Given a document, LIWC generates a vector to represent the statistics of words falling into
each personal aspect. Considering that the categories in the LIWC dictionary, such as “pro-
nouns,” “job,” and “home,” provide different privacy hints, LIWC features can be adopted
to capture the sensitive information of a given tweet.

—Privacy Dictionary. This dictionary is devised by [77] and derived from a wide range of
privacy-sensitive empirical materials, offering a new linguistic resource for automated con-
tent analysis on privacy related texts. This dictionary consists of eight high-level categories:
Law,OpenVisible,OutcomeState,NormsRequisites,Restriction,NegativePrivacy, Intimacy, and
PrivateSecret. With the help of this dictionary, we can obtain the similar output as LIWC.

—Sentence2Vector. Due to the compelling success of neural networks in representation
learning, considering the short-length nature of tweets, we treated each tweet as a sen-
tence and employed the textual feature extraction tool Sentence2Vector5 (i.e., a derivative
of word2vec), which has been found to be sufficient to alleviate the semantic problem of
word sparseness [17, 43] to generate the vector representation for each tweet.

—Sentiment Analysis. Since different personal aspects are frequently conveyed with differ-
ent sentiments, we utilized the Stanford NLP sentiment classifier6 to judge tweets’ polarity.
In particular, we can assign each tweet with a value ranging from 0 to 4, corresponding to
very negative, negative, neutral, positive, and very positive sentiment, respectively.

—Meta-features.Apart from the aforementioned linguistic features, we can also extract sev-
eral meta-features due to the observation that tweets revealing different personal aspects
may have certain special characteristics. For example, tweets describing what is happening
are more likely to contain images, while tweets that reveal users’ “status change” or “friend-
ship” may contain user mentions. Therefore, we extracted the meta-features, including the
presence of hashtags, slang words, images, emojis,7 user mentions, and the timestamp at
hour level.

4http://www.liwc.net/.
5https://github.com/klb3713/sentence2vec.
6http://stanfordnlp.github.io/CoreNLP/.
7An emoji refers to a “picture character,” which can express facial expressions, concepts, activities, and so on.
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Table 4. Performance Comparison of Different Models

Models Avg_prec One_err S@1 S@3 S@5 P@1 P@3 P@5

Shallow

SVM 52.91% 69.35% 30.65% 72.98% 80.47% 30.65% 26.33% 18.47%

MTL_Lasso 58.00% 56.09% 43.91% 73.18% 82.11% 43.91% 27.38% 19.31%

GO_MTL 58.68% 56.02% 43.98% 74.24% 83.92% 43.98% 27.65% 19.78%

CMTL 58.99% 55.84% 44.16% 74.41% 83.30% 44.16% 27.81% 19.63%

TOKEN 59.05% 55.96% 44.04% 74.72% 84.34% 44.04% 27.96% 19.92%

Deep

TextRNN 61.84% 49.61% 50.39% 74.50% 82.64% 50.39% 28.67% 19.90%

TextCNN 69.31% 39.99% 60.01% 81.97% 88.40% 60.01% 31.77% 21.44%

D-TOKEN 69.43% 39.96% 60.04% 83.39% 89.35% 60.04% 32.15% 21.56%

GrHA 71.44%∗ 39.17%∗ 60.83%∗ 85.83%∗ 92.20%∗ 60.83%∗ 33.51%∗ 22.60%∗

The symbol ∗ denotes that the performance improvement of our model is statistically significant with p < 0.01 compared

against all the baselines.

Table 4 shows the evaluation results of different methods with respect to various metrics. To
validate the performance improvement is significant, we also conducted a pairwise significance
test (i.e., t-test) between our proposed GrHA and the best baseline for each evaluation metric.
Based on this table, we have the following observations.

—GrHA consistently outperforms both shallow learning and deep learning baselines across
different evaluation metrics with all p-values p < 0.01, which indicates that GrHA can sig-
nificantly improve the performance of fine-grained privacy detection over state-of-the-art
methods. In a sense, this suggests that it is reasonable to incorporate the hierarchical atten-
tive representation learning for UGCs as well as the graph-based semantic regularization
toward fine-grained privacy detection.

—Deep learning methods (i.e., GrHA, D-TOKEN, TextCNN, and TextRNN) achieve better per-
formance than shallowing learning methods do (i.e., SVM, MTL_Lasso, GO_MTL, CMTL,
and TOKEN). In particular, we noticed that D-TOKEN exceeds TOKEN. This confirms the
benefit of adopting the deep neural networks in the context of privacy detection from UGCs
rather than the hand-crafted privacy-oriented features.

—GrHA surpasses all the deep learning baselines, namely, TextCNN, TextRNN and D-TOKEN,
indicating the advantage of incorporating the hierarchical attentive representation learning
for UGCs as well as the graph-based semantic regularization. One plausible explanation is
that personal aspect representations learned by GCNs are more capable of capturing the
semantic correlations among personal aspects, providing more accurate regularization over
the latent representation learning of UGCs, and thus achieving more effective fine-grained
privacy detection.

—Among all the shallow learning methods that adopt the hand-crafted privacy-oriented fea-
tures, the single task learning SVM achieves the worst performance, which implies the cor-
relations among personal aspects do exist. In addition, GO_MTL, CMTL, and TOKEN show
superiority over MTL_Lasso, suggesting the semantic correlations among personal aspects
do need to be taken into account in the context of fine-grained privacy detection.

Moreover, to demonstrate the practical value of our proposed GrHA, we applied it to the histor-
ical posts of a user, which consists of 118 tweets, and automatically generated a temporal privacy-
aware profile, as shown in Figure 6. For clarity, we only presented the entries that are correctly
captured by our method.
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Fig. 6. Illustration of the privacy-aware profiling.

Fig. 7. Illustration of the hierarchical attention mechanism results.

4.4 On Hierarchical Attention Mechanism (RQ2)

To get a deep understanding of the proposed GrHA toward fine-grained privacy detection, we
particularly analyzed its one essential component: the hierarchical attention mechanism, which
consists of two levels (i.e., word-level and sentence-level) of attention mechanisms.
We first intuitively illustrated themacroword/sentence confidences assigned by the hierarchical

attention mechanism for testing samples with a thermodynamic diagram in Figure 7. The lighter
the color, the higher the weight assigned to the word/sentence. As can be seen from Figure 7(a), the
word-level attention mechanism does assign different levels of confidences to different words of a
sentence, while the similar observation regarding the sentence-level attention mechanism can be
found in Figure 7(b). This generally suggests that both levels of attention mechanisms contribute
to the fine-grained privacy detection, especially the privacy indicator learning.
Then, we studied the micro working principle of the hierarchical attention mechanism, we

showed the experimental results on the confidence assignment with several tweet samples in
Figure 8. To be specific, we can extract the confidences of word-level and sentence-level accord-
ing to Equations (3) and (6) on the basis of TensorFlow framework, respectively. The depth of the
orange/blue bar stands for the confidence of the word/sentence learned by the attention mecha-
nism, where the darker color refers to the larger attention weight. As we can see, given the tweet1
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Fig. 8. Visualization of both word-level and sentence-level attention mechanisms. The color depth of the
orange/blue bar stands for the confidence of the word/sentence learned by the attention mechanism. The
darker color refers to the larger attention weight. “T”: Tweet.

Table 5. Effects of the Word-Level and Sentence-Level Attention Mechanisms

Model
Attention

Avg_prec One_err S@1 S@3 S@5 P@1 P@3 P@5
Word Sentence

GrHA

No No 68.33% 43.72% 56.28% 83.43% 90.04% 56.28% 32.40% 22.03%

No Yes 68.79% 43.30% 56.70% 83.85% 90.83% 56.70% 32.65% 22.18%

Yes No 70.04% 40.78% 59.22% 84.29% 90.98% 59.22% 32.72% 22.15%

Yes Yes 71.44% 39.17% 60.83% 85.83% 92.20% 60.83% 33.51% 22.60%

“Yes”/“No” refers to the presence/absence of the corresponding attention mechanism.

that leaks the user’s name and occupation, our model does identify the informative keywords,
such as the user name “name1” and occupation-oriented indicators: “work,” “@company1,” “soft-
ware,” and “developer.” Meanwhile, we noticed that our model assigns the highest confidence to
the second sentence that contains the most of the indicator words of the given tweet, which is
obviously reasonable. In fact, similar observations can be derived from other examples in Figure 8,
which intuitively verifies the necessity of incorporating the hierarchical attention mechanism in
the context of fine-grained privacy detection and the complementary relation between the word-
level and sentence-level attention mechanisms.
Apart from the macro and micro qualitative illustration, we also quantitatively compared

GrHA with its three derivatives, where different combinations of attention mechanisms at dif-
ferent levels are disabled by assigning the same weights to all hidden states of the corresponding
BiGRU.
Table 5 shows the effects of the word-level and sentence-level attention mechanisms in our

model. As can be seen, disabling the attention mechanism at any level hurts the performance of
GrHA to a certain extent, and removing both levels of attention mechanisms results in the worst
performance. This implies that the attention mechanisms at two levels complement each other and
both contribute to the tweet representation learning in the context of fine-grained privacy detec-
tion. This may be attributed to the fact that the sentence-level attention mechanism can capture
the global privacy leakage, while the word-level attention mechanism can distinguish the local pri-
vacy indicator. In addition, interestingly, we found that removing the word-level attention mech-
anism from GrHA devastates the performance more compared with removing the sentence-level
attention mechanism. This suggests that the word-level attention mechanism contributes more to
the fine-grained privacy detection, as compared to the sentence-level attention mechanism. One
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Fig. 9. Comparison between GrHA and GrHA-NoHA on several testing tweets. For the privacy concern, we
replaced the sensitive information with the general symbols, such as “user1” and “XXXXX”. In addition, we
represented the correct judgment of the model with the green circle and the wrong one with the red cross.

possible explanation is that words are usually more concise and discriminative than sentences in
characterizing the privacy information revealed by the UGC.
To acquire a deeper understanding of the hierarchical attentionmechanism,we also provided the

concrete comparison between our GrHA and its derivative, GrHA-NoHA, where the hierarchical
attention mechanism is completely removed, with several testing samples. As we can see from
Figure 9, GrHA usually outperforms GrHA-NoHA in cases where there are the privacy indicator
keywords, like the “birthday,” “email address,” and “earn,” and GrHA does distinguish them by the
hierarchical attentive representation learning network. Nevertheless, this property cannot avoid
certain failing cases for GrHA, especially when the tweet does contain privacy indicators but it
reveals other people’s personal aspects rather than the user’s, which, hence, belongs to the neutral
statement in our context. Overall, the observations from Figure 9 intuitively show the advantage
of GrHA over GrHA-NoHA in the fine-grained privacy detection.

4.5 On Graph-Based Semantic Regularization (RQ3)

To mine the deep insight into the graph-based semantic correlations among personal aspects, we
first visualized the probability adjacency matrix based on the training data in Figure 10, where, for
neatness, we only selected a few representative personal aspects. As can be seen from Figure 10,
each node in the graph represents a specific personal aspect and the edge between two personal
aspects stands for the conditional probability. In addition, the thickness of the edge reflects the
magnitude of the corresponding conditional probability. For example, the edge from the personal
aspect “Salary” to “Occupation” is thicker than that from “Salary” to “Graduation”, indicating that
when a tweet reveals the user’s “Salary,” the personal aspect “Occupation” is more likely to be dis-
closed at the same time rather than the “Graduation.” Meanwhile, we noticed that personal aspects
“Age” and “Birthday” are highly correlated, and so are “Education” and “Graduation,” which is rea-
sonable according to common sense. These observations show that personal aspects are indeed not
independent but correlated due to their semantic connections.
Then, to thoroughly verify the effectiveness of the graph-based semantic regularization, we

adopted two settings: the whole GrHA and its derivative GrHA-NoHA, whose hierarchical at-
tention mechanism is disabled. Accordingly, we introduced two derivatives of them: GrHA-NoGr
and GrHA-NoHA-NoGr, respectively, where the graph-based semantic regularization of the
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Fig. 10. Visualization of the probability adjacency matrix of selected personal aspects based on the training
data. Each node stands for a specific personal aspect, and the edge between two nodes reflects the conditional
probability between the two corresponding personal aspects.

Table 6. Performance Comparison of Our Proposed Network with Its Derivatives Excluding
the Semantic Correlations among Personal Aspects

Models Avg_prec One_err S@1 S@3 S@5 P@1 P@3 P@5
GrHA-NoHA-NoGr 65.39% 45.27% 54.73% 78.39% 85.77% 54.73% 30.37% 20.74%

GrHA-NoHA 68.33% 43.72% 56.28% 83.43% 90.04% 56.28% 32.40% 22.03%
GrHA-NoGr 67.84% 42.73% 57.27% 81.28% 88.27% 57.27% 31.50% 21.48%

GrHA 71.44% 39.17% 60.83% 85.83% 92.20% 60.83% 33.51% 22.60%

corresponding method is removed. Table 6 shows the effects of the semantic correlation regular-
ization in GrHA-NoHA and GrHA, respectively. As can be seen, both GrHA and GrHA-NoHA
show superiority over their derivatives, i.e., GrHA-NoGr and GrHA-NoHA-NoGr, respectively,
indicating that the semantic regularization over the representation learning for UGCs does
enhance the model performance and should be taken into account in the context of fine-grained
privacy detection. Meanwhile, as a by-product, we found that GrHA significantly outperforms
both GrHA-NoGr and GrHA-NoHA, while GrHA-NoHA-NoGr presents the worst performance.
This enables us to draw the conclusion that the two essential components of GrHA (i.e., the
hierarchical attention mechanism and graph-based semantic regularization) complement each
other and both are crucial in the fine-grained privacy detection.
Apart from the quantitative evaluation, we also studied the success and failure cases for GrHA

and GrHA-NoGr. As can be seen from Figure 11, GrHA usually exceeds GrHA-NoGr in cases where
the given tweet reveals more than one personal aspect. For example, we found that the user who
posts the first tweet tends to leak his/her “Contact” and “Current location” simultaneously, and this
privacy leakage is correctly identified by GrHA rather than GrHA-NoGr. One possible explanation
is that there is an obvious semantic correlation between personal aspects “Contact” and “Current
location,” and this can be captured by GrHA rather than GrHA-NoGr. In a sense, the capability of
capturing the semantic correlations among personal aspects contributes to the better performance
of GrHA in fine-grained privacy detection. Unfortunately, GrHA can also yield several failure
tweets, especially when the personal aspects revealed simultaneously in one tweet have no obvious
semantic correlation. As can be seen from Figure 11, GrHA fails to identify the privacy leakage
of the last tweet example that reveals the users’ personal aspects “negative emotion” and “career
promotion,” the aspects of which seldom occur simultaneously in one tweet.
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Fig. 11. Comparison between GrHA and GrHA-NoGr on several testing tweets. For the privacy concern,
we replaced the sensitive information with general symbols such as “user1” and “XXXXX”. In addition, we
represented the correct judgment of the model with the green circle and the wrong one with the red cross.

Fig. 12. Average precision comparison with different values of τ and φ.

4.6 On Sensitivity Analysis (RQ4)

In this part, we performed the sensitivity analysis of the proposed GrHA, where we particularly
studied the effects of the threshold parameter τ , the tradeoff parameter φ, and the depth of GCNs.
Effect of the threshold parameter τ . Figure 12(a) shows the average precision of our GrHA

with respect to the threshold parameter τ for the conditional co-occurrence matrix binarization
in Equation (8). In particular, we changed the value of τ within the ranges of [0.001, 0.009] and
[0.01, 0.1] with the steps of 0.001 and 0.01, respectively. As we can see, when τ ranges from 0.001 to
0.004, the performance of our proposed GrHA keeps increasing and achieves the optimal perfor-
mance at τ = 0.004. In addition, we noticed that when τ approaches 0.1 from 0.05, the performance
of GrHA drops rapidly. This suggests that it is reasonable to filter out the edges with too small co-
occurring probabilities (i.e., 0.001 � τ � 0.003), but inadvisable to leave out too many edges (i.e.,
τ > 0.05).

Effect of the tradeoff parameter φ. To explore the effect of φ in controlling the balance be-
tween the personal aspects themselves and their neighborhood in learning the personal aspect
representations (see Equation (9)), we conducted the sensitivity analysis of GrHA with respect to
φ by varying the value of φ within the range of [0.1, 0.9] with a step of 0.1. As can be seen from
Figure 12(b), GrHA obtains the best performance at φ = 0.2, while suffering from a dramatic drop
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Table 7. Performance Comparison with Different Depths of GCNs in Our Model

Model Layer Avg_prec One_err S@1 S@3 S@5 P@1 P@3 P@5

GrHA

1-Layer 68.65% 41.24% 58.76% 81.90% 89.28% 58.76% 31.78% 21.60%

2-Layer 71.44% 39.17% 60.83% 85.83% 92.20% 60.83% 33.51% 22.60%

3-Layer 68.30% 43.27% 56.73% 82.63% 89.66% 56.73% 31.84% 21.79%
4-Layer 61.96% 49.77% 50.23% 75.92% 84.16% 50.23% 28.70% 20.01%

in performance when φ increases from 0.6 to 0.9. According to Equation (9), the own features of
personal aspects would not be considered when φ → 1, while those of the correlated personal as-
pects would be ignored when φ → 0. Therefore, the observation allows us to conclude that it is
important to balance the weights between the own features of personal aspects and those of their
neighbors in the personal aspect representation learning. Especially, it is inadvisable to set φ → 1,

i.e., the diagonal element p jj → 0, where the own features of personal aspects tend to be totally

discarded resulting in the worst performance of GrHA.
Effect of the depth of GCNs for semantic regularization. As the depth of GCNs may af-

fect the semantic correlation modeling and, hence, affect the graph-based semantic regularization,
we also performed the corresponding sensitivity analysis of our model. Table 7 shows the perfor-
mance comparison of our model with different numbers of GCN layers. As we can see, our model
obtains the optimal performance when we chose GCNs with two layers, which is similar to what
is reported in [9, 36, 45, 86]. In addition, we noticed that when the number of layers is larger than
two, with the increasing number of layers, the performance of our proposed GrHA keeps decreas-
ing. One possible explanation is that when using more layers for GCNs, the semantic propagation
among personal aspects would be accumulated, which may result in overfitting and thus hurt the
performance [9, 45].

5 CONCLUSION AND FUTURE WORK

In this work, to tackle the practical problem of fine-grained privacy detection, we present a graph-
regularized hierarchical attentive representation learning network, termed GrHA. In particular,
the proposed GrHA consists of two essential components: hierarchical attentive representation
learning and graph-based semantic regularization. As for the hierarchical attentive representation
learning, we introduce a hierarchical attentive network to distinguish the privacy indicators, and,
hence, obtain the accurate representations for UGCs. Pertaining to the graph-based semantic
regularization, we employ the GCNs to explore the semantic correlations that reside in personal
aspects. Extensive experiments on a real-world dataset well validate our proposed GrHA and
demonstrate the necessity of integrating both the hierarchical attentive representation learning and
graph-based semantic regularization in the context of fine-grained privacy detection. Interestingly,
we find that different words/sentences do have different confidences in revealing the users’
privacy, and the word-level attention mechanism contributes more to the privacy detection
compared to the sentence-level one.
In this work, we mainly focus on the potential privacy detection from the users’ historical posts,

but ignore the factor of users’ social connections. In the future, we plan to investigate the second-
order privacy leakage on UGCs.
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