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Abstract
User interest inference from social networks is
a fundamental problem to many applications.
It usually exhibits dual-heterogeneities: a user’s
interests are complementarily and comprehensively
reflected by multiple social networks; interests
are inter-correlated in a nonuniform way rather
than independent to each other. Although great
success has been achieved by previous approaches,
few of them consider these dual-heterogeneities
simultaneously. In this work, we propose a
structure-constrained multi-source multi-task
learning scheme to co-regularize the source
consistency and the tree-guided task relatedness.
Meanwhile, it is able to jointly learn the task-
sharing and task-specific features. Comprehensive
experiments on a real-world dataset validated our
scheme. In addition, we have released our dataset
to facilitate the research communities.

1 Introduction
User interest inference is the basis for many applications,
such as adaptive E-learning [Abel et al., 2011a] and
personalized service [Pennacchiotti and Popescu, 2011].
Take target advertisement as an example. It is naturally to
market cosmetics to ladies, whom are keen on beauty. On
the other hand, recently we have witnessed many people
with diverse interests involving in multiple social networks
simultaneously. Such trend has been statistically validated
by a survey result: 52% of online adults use multiple social
media services1. Multiple social networks comprehensively
convey users’ interests from different view points. For
instance, users may update their daily interests in Facebook,
follow their interested accounts in Twitter, and ask or answer
questions they are interested in Quora. Thus, fusing cues
from multiple sources can potentially boost the performance
of user interest inference by a large margin.

Inferencing user interests from multiple social networks,
however, is non-trivial due to the following reasons.
(a) Source Integration. Although users’ footprints on

1According to Paw Research Internet Project’s Social Media
Update 2014: http://www.pewinternet.org/.

heterogeneous social networks describe their interests
from different views, they should characterize a same
interest preference consistently. Therefore, how to
effectively and comprehensively fuse them is one tough
challenge. (b) Interest Relatedness Characterization.
Interests are usually not independent but correlated
in a nonuniform way. For example, given a set of
interests I = {basketball, football, travel, cooking},
the relatedness between basketball and football may be
stronger than that between basketball and cooking. Given
that in our dataset, most users who like to play basketball
are more likely to spend their spare time on football than
cooking. In the context of user interest inference, each
interest is usually aligned with one task. Consequently, the
second challenge is how to capture and characterize the
relatedness among tasks and how to incorporate this into
multi-task learning. (c) Discriminant Feature Selection.
The discrimination of features is different from task to task.
Learning task-sharing features and task-specific features
effectively is significant to user interest inference. This thus
poses another crucial challenge for us.

It is noticeable that there are three lines of researches
dedicated to the problem of user interest inference. One
is the single source single task learning [Pennacchiotti and
Popescu, 2011]. In this context, neither the relatedness
among tasks nor the complementary information across
sources is explored. Another line of efforts is the multi-
task learning [Xue et al., 2007]. They take the task
relatedness into account to boost the learning performance
and alleviate the problem of insufficient training samples that
the traditional single task learning is faced with. It has been
observed that learning multiple related tasks simultaneously
can improve the modeling accuracy and lead to a better
learning performance, especially in cases where only a
limited number of positive training samples exist for each task
[Fei and Huan, 2013]. The third category of approaches is the
multi-source learning [Abel et al., 2011b; 2013]. Instead of
sticking to a single source, they propose to aggregate multiple
sources to infer users’ interests. It should be noted that the last
two categories of approaches have the weakness of: existing
multi-task learning explores the relatedness among tasks, but
overlooks the consistency among different sources of a single
task; whereas existing multi-source learning ignores the value
of the label information of the other related tasks.



As an improvement to the existing works, we propose
a structure-constrained multi-source multi-task learning
(SM2L) scheme to infer users’ interests. In particular, our
scheme jointly regularizes two important aspects. One is the
source consistency. The rationale is that interests reflected
by different social networks for the same person should be
similar, and hence the disagreement among the prediction
results should be penalized. The other is the tree-guided
task relatedness modeling. Based on prior knowledge,
we organize all the tasks (interests) into a tree structure,
which can effectively capture various relatedness among
tasks. Specifically, the tree structure settles all tasks in
leaf nodes and characterizes the relatedness among them
by internal nodes. Moreover, the higher level the internal
node is located, the weaker is the relatedness imposed on its
children tasks. This is accomplished by a tree-guided group
lasso regularizer. Meanwhile, SM2L learns representative
features for individual task and groups of related tasks. A
potential benefit of sharing training instances among tasks is
that the data scarcity problem can be alleviated. Extensive
experiments on a real-world dataset well validated our
scheme. We have released our compiled dataset2, which will
facilitate other researchers to repeat our approach and to
comparatively verify their own ideas.

2 Related Work
The problem of user interest inference from multiple social
networks exhibits dual-heterogeneities: each task (interest)
corresponds to features from multiple sources. Towards this
end, the most related work lies in the area of multi-view
multi-task learning. [He and Lawrence, 2011] proposed a
graph-based iterative framework for multi-view multi-task
learning (IteM2) in the context of text classification. Given
task pairs, IteM2 projects them to a new Reproducing Kernel
Hilbert Space based upon the common views they share.
However, this is a transductive model, which fails to generate
predictive models on independent and unknown samples.
To deal with the intrinsic trouble of transductive models,
[Zhang and Huan, 2012] presented an inductive multi-
view multi-task learning model (regMVMT). It employs
a co-regularization term to achieve model consistency on
unlabeled samples from different views. Meanwhile, another
regularization function is utilized across multiple tasks to
guarantee that the learned models are similar. Noticeably,
the implicit assumption that all tasks are uniformly related
without prior knowledge might be inappropriate. Realizing
this limitation, the authors proposed a revised model
(regMVMT+) that incorporates a component to automatically
infer the task relatedness. As a generalized model of
regMVMT, an inductive convex shared structure learning
algorithm for multi-view multi-task problem (CSL-MTMV)
was developed in [Jin et al., 2013]. CSL-MTMV considers
the shared predictive structure among multiple tasks.

Notably, only a limited number of works have been
published regarding multi-view multi-task learning and
few of them have been applied to user interest inference.

2The compiled dataset is currently publicly accessible via:
http://msmt.farbox.com/.

Distinguished from these existing methods which maximize
the agreement between views using unlabeled data, SM2L
works towards supervised learning with two advantages:
1) SM2L considers source consistency and tree-guided
relatedness among tasks simultaneously; 2) SM2L allows the
learning of task-sharing features and task-specific features
using weighted group lasso, where the weights can be learned
from prior knowledge.

3 User Interest Inference
This section details the proposed SM2L scheme for user
interest inference.

3.1 Notation
We first introduce the notations throughout this section. We
use bold capital letters (e.g. X) and bold lowercase letters
(e.g. x) to denote matrices and vectors, respectively. We
adopt non-bold letters (e.g. x) to represent scalars, and Greek
letters (e.g. λ) as regularization parameters. If not clarified,
all vectors are in column forms.

Suppose we have a set of N labeled data samples, S ≥ 2
sources and T ≥ 2 tasks. Let Ds denote the number
of features extracted from the s-th source. Let Xs ∈
RN×Ds denote the feature matrix generated from source
s, and each row represents a user sample. The feature
dimension extracted from all these sources is thus D =∑S
s=1Ds. The whole feature matrix can be written as

X = {X1,X2, · · · ,XS} ∈ RN×D. The label matrix can
be represented as Y = {y1,y2, · · · ,yT } ∈ RN×T , where
yt = (y1t , y

2
t , · · · , yNt )T ∈ RN corresponds to the label

vector regarding the t-th task.

3.2 Problem Formulations
For each task, we can learn S predictive models, each of
which is generated from one source and defined as follows,

fst(Xs) = Xswst, (1)

where wst = (w1
st, w

2
st, · · · , w

Ds
st )

T ∈ RDs represents the
linear mapping function for the t-th task with respect to the
s-th source. The final predictive model for task t can be
reinforced via linear combination of these S models. Without
the prior knowledge of source confidence, we treat all sources
equally as follows,

ft(X) =

S∑
s=1

1

S
fst(Xs). (2)

In multi-class problems, tasks are usually inter-correlated.
Multi-source multi-task learning is thus proposed to model
their relatedness while seamlessly integrating multiple
sources. To select discriminant features, group lasso is
considered in the component of multi-task learning. Let
W = (w1,w2, · · · ,wT ) ∈ RD×T denote the linear mapping
block matrix, where wt = (wT

1t,w
T
2t, · · · ,wT

St)
T ∈ RD.

The multi-source multi-task learning with group lasso can be
formalized as follows,

Γ =
1

2N

T∑
t=1

∥∥∥∥yt − S∑
s=1

1
S

Xswst

∥∥∥∥2 + λ

2

S∑
s=1

Ds∑
d=1

∥∥wd
s

∥∥, (3)



where wd
s = (wds1, w

d
s2, · · · , wdsT ),

∑S
s=1

∑Ds

d=1

∥∥wd
s

∥∥ =

‖W‖
2,1

and λ is the nonnegative regularization parameter
that regulates the sparsity of the solution regarding W. When
T ≥ 2, the weights of one feature across all tasks are first
grouped by the L2 norm, and all features are then grouped by
the L1 norm. Thus, the L2,1 norm penalty is able to select
features based on their strength over all tasks. In this way, we
can simultaneously learn the task-sharing features and task-
specific features. Obviously, when T = 1, this formulation
reduces to Lasso [Tibshirani, 1996].

However, the above optimization problem simply assumes
that all the tasks share a common set of relevant input
features, which might be unrealistic in many real word
scenarios. For example, in our work, the tasks “basketball”
and “football” tend to share a common set of relevant input
features, which are less likely to be useful for the task
“cooking”. This consideration propels us to assume that the
relatedness among different tasks can be characterized by a
tree T with a set of nodes V . In particular, the leaf nodes
represent all the tasks, while the internal nodes denote the
groupings of leaf nodes. Intuitively, each node v ∈ V of
the tree T can be associated with group Gv , which consists
of all the leaf nodes (tasks) belonging to the subtree rooted
at node v. Moreover, the higher level the internal node
is located at, the weaker relatedness it controls. The root
of T is assigned the highest level. To characterize such
strength of relatedness among tasks, we assign a weight ev
to each node v ∈ V according to the prior knowledge via
a hierarchical agglomerative clustering algorithm [Schickel-
Zuber and Faltings, 2007]. As illustrated in Figure 1, it
is apparent that the tasks “basketball” and “football” are
more correlated as compared to the task “cooking”. Thus,
in Figure 1, the tasks “basketball” and “football” are first
grouped in node v4 with a weight ev4 = 0.6. Then these two
tasks are grouped in a higher level internal node v5, whose
weight ev5 = 0.4, together with the task “cooking”.

We mathematically formulate the source integration and
tree-constrained3 group lasso into one unified model,

Γ =
1

2N

T∑
t=1

∥∥∥∥yt − S∑
s=1

1
S

Xswst

∥∥∥∥2 + λ

2

S∑
s=1

Ds∑
d=1

∑
v∈V

ev
∥∥wd

sGv

∥∥,
(4)

where wd
sGv

is a vector of coefficients {wdst : t ∈ Gv}.
In addition, we assume that the mapping functions from
all sources agree with one another as much as possible.
Therefore, we introduce the regularization term to model
the result consistency among different sources. The final
objective function Γ is restated as follows,

1

2N

T∑
t=1

∥∥∥∥yt − S∑
s=1

1
S

Xswst

∥∥∥∥2 + λ

2

S∑
s=1

Ds∑
d=1

∑
v∈V

ev
∥∥wd

sGv

∥∥
+

µ

2N

T∑
t=1

S∑
s=1

∑
s′ 6=s

∥∥Xswst −Xs′ws′t

∥∥2 , (5)

3Beyond tree-structure, our model is extendable to incorporate
other structures, such as graph.

Figure 1: Illustration of inter-interests relatedness in a tree
structure.
where µ is the nonnegative regularization parameter that
regulates the disagreement among models learned from
different sources.

3.3 Optimization
Considering that the second term in Eqn. (5) is not
differentiable, we use an equivalent formulation of it,
which has been proven by [Bach, 2008], to facilitate the
optimization as follows,

λ

2

( S∑
s=1

Ds∑
d=1

∑
v∈V

ev
∥∥wd

sGv

∥∥)2. (6)

Still, the L2,1 norm in the above formulation gives rise to
a non-convex function, which makes it intractable to solve
directly. Therefore, we further resort to another variational
formulation [Argyriou et al., 2008] of Eqn. (6). According
to the Cauchy-Schwarz inequality, given an arbitrary vector
b ∈ RM such that b 6= 0, we have,

M∑
i=1

|bi| =
M∑
i=1

θ
1
2
i θ
− 1

2
i |bi|

≤
( M∑
i=1

θi
) 1

2
( M∑
i=1

θ−1
i b2i

) 1
2 ≤

( M∑
i=1

θ−1
i b2i

) 1
2
, (7)

where θi’s are introduced variables that should satisfy∑M
i=1 θi = 1, θi > 0 and the equality holds for

θi = |bi|/‖b‖1. Based on this preliminary, we can
derive the following inequality,( S∑
s=1

Ds∑
d=1

∑
v∈V

ev
∥∥wd

sGv

∥∥)2 ≤ S∑
s=1

(∑Ds
d=1

∑
v∈V ev

∥∥wd
sGv

∥∥)2
qs

≤
S∑
s=1

Ds∑
d=1

(∑
v∈V ev

∥∥wd
sGv

∥∥)2
qs,d

≤
S∑
s=1

Ds∑
d=1

∑
v∈V

e2v
∥∥wd

sGv

∥∥2
qs,d,v

,

(8)
where we introduce the variable qs,d,v . The equality can be
attained if qs,d,v satisfies that,

qs,d,v =
ev
∥∥wd

sGv

∥∥∑S
s=1

∑Ds
d=1

∑
v∈V ev

∥∥wd
sGv

∥∥ . (9)

Consequently, minimizing Γ is equivalent to minimizing the
following convex objective function,

1

2N

T∑
t=1

∥∥∥∥yt − S∑
s=1

1
S

Xswst

∥∥∥∥2 + λ

2

S∑
s=1

Ds∑
d=1

∑
v∈V

e2v
∥∥wd

sGv

∥∥2
qs,d,v

+
µ

2N

T∑
t=1

S∑
s=1

∑
s′ 6=s

∥∥Xswst −Xs′ws′t

∥∥2 . (10)



To facilitate the computation of the derivative of objective
function Γ with respect to wst, we define a diagonal matrix
Qst ∈ RDs×Ds as follows,

Qst(d, d) =
∑

v:t∈Gv

e2v
qs,d,v

. (11)

Finally, we have the following objective function,

1

2N

T∑
t=1

∥∥∥∥yt − S∑
s=1

1
S

Xswst

∥∥∥∥2 + λ

2

T∑
t=1

S∑
s=1

wT
stQstwst

+
µ

2N

T∑
t=1

S∑
s=1

∑
s′ 6=s

∥∥Xswst −Xs′ws′t

∥∥2 . (12)

We adopt the alternating optimization strategy to solve
Eqn. (12) [Kim and Xing, 2010]. Particularly, we
alternatively optimize wst and qs,d,v , where we optimize one
variable with the other one fixed in each iteration and keep
this iterative procedure until the objective value converges.

When qs,d,v is fixed, we take the derivative of objective
function Γ regarding wst as follows,

∂Γ

∂wst
=

1

NS
XT
s (

S∑
s=1

1

S
Xswst − yt) + λQstwst

+
∑
s 6=s′

µ

N
XT
s (Xswst −Xs′ws′t). (13)

Setting Eqn. (13) to zero and rearranging the terms, we derive
that all wst’s can be learned jointly by the following linear
system given a task t,

Ltwt = bt,
L11 L12 L13 · · · L1S

L21 L22 L23 · · · L2S

L31 L32 L33 · · · L3S

...
...

...
. . .

...
LS1 LS2 LS3 · · · LSS




w1t

w2t

w3t

...
wSt

 =


b1t

b2t

b3t

...
bSt

 , (14)

where Lt ∈ RD×D is a sparse block matrix with S × S
blocks, wt ∈ RD and bt ∈ RD are both sparse block
matrices with S blocks. Lss, Lss′ and bst are defined as,

Lss = 1
NS2 XT

s Xs +
µ(S−1)
N

XT
s Xs + λQst,

Lss′ = 1
NS2 XT

s Xs′ − µ
N

XT
s Xs′ ,

bst = 1
NS

XT
s yt.

(15)

According to the definition of positive-definite matrix, Lt can
be easily proven to be positive definite and invertible. Then
we can derive the closed-form solution of wt as follows,

wt = L−1
t bt. (16)

Furthermore, we notice that wt can be computed individually,
which saves considerable space and time cost. On the other
hand, we optimize qs,d,v according to Eqn. (9) with fixed wt.

3.4 Construction of Interest Tree Structure
We aim to employ the hierarchical agglomerative clustering
algorithm to construct the tree structure. One challenge is that
an interest is usually represented by a single concept, which
makes it hard to measure the similarities among interests and

apply the hierarchical agglomerative clustering algorithm.
Towards this end, two types of prior knowledge are utilized.
1) External source. We exploit an external source—the Web,
where a huge amount of prior knowledge about interests are
encoded implicitly. We transform each interest into a query
and submit it to Google search engine. We collect the top
10 webpages, and then employ the library of BoilerPipe4

[Kohlschütter et al., 2010] to extract clean main contents
from the returned webpages. Therefore, each interest can be
represented by a document, based on which the Bag-of-words
model [Mitchell, 1997] with TF-IDF term weighting scheme
[Salton and McGill, 1983] can be applied and the similarities
among interests can be evaluated.
2) Internal source. Although the external source provides
us the general prior knowledge, we believe that the internal
prior knowledge stored in our dataset also plays a vital role
in user interest inference. Driven by this consideration, we
propose to measure the similarities among interests based
on their co-occurrence in users’ LinkedIn profiles in our
dataset5. It deserves attention that we exploit all available
LinkedIn profiles that exhibit users’ personal interests rather
than that of the subset of users selected for the task of
interest inference. Suppose we have a set of interests
I = {In1, In2, · · · , InT }, and a set of documents DD =
{d1, d2, · · · , dN}, where dl contains all interests of user l. Let
c(j, k, l) = 1 if and only if interests Inj and Ink both occur
in dl, and otherwise c(j, k, l) = 0. Then the co-occurence
matrix H is defined as follows,

H(j, k) =

{ ∑
l c(j,k,l)∑

j

∑
l c(j,k,l)

if j 6= k;

1 otherwise.
(17)

Each row of H corresponds to the co-occurrence of an interest
with others. Then we use the JensenShannon divergence
[Bordag, 2008] to measure the similarities among interests.

Then it is suggested to apply the hierarchical agglomerative
clustering algorithm on these enriched interests and build the
tree structure. To assign appropriate weights to nodes, we
choose to utilize the normalized height hv of subtree rooted at
node v to characterize its weight ev , where ev = 1−hv . Such
assignment guarantees the aforementioned condition that the
higher node corresponds to the weaker relatedness. It is noted
that we normalize the heights for all nodes such that the root
node is at height 1. We thus derive two models SM2L-e and
SM2L-i based on two types of prior knowledge, respectively.

3.5 Complexity Discussion
To analyze the complexity of SM2L, we need to solve the
time cost in terms of constructing Q, Lt and bt, defined in
Eqn. (11) and Eqn. (15), as well as computing the inverse of
Lt. Assuming D � S, the construction of diagonal matrix
Q has a time complexity of O(DT ), and the construction
of matrix Lt has a time complexity of O(ND2). Due to
the fact that the time cost of matrix multiplication XT

s Xs′

and that of constructing bt involved in Eqn. (15) remain the
same for all iterations and Lt is symmetric, we can reduce
the practical time consumption remarkably. In addition,

4https://code.google.com/p/boilerpipe/.
5Users may list a set of personal interests in their LinkedIn

profiles.



Figure 2: Distribution of user frequency distribution with
respect to the number of interests over our dataset.

computing the inverse of Lt has the complexity of O(D3)
by the standard method. Then the total complexity should
be O(D3T ). We notice that the speed bottleneck lies in the
number of features and the number of tasks instead of the
number of data samples. As D is usually small, SM2L should
be computationally efficient.

4 Experiments
In this paper, we cast the problem of user interest inference
as the structure constrained multi-source multi-task learning
problem. In particular, we explored four popular social
networks: Twitter, Facebook, Quora and LinkedIn.

4.1 Dataset Construction
To construct the benchmark dataset, we need to first tackle
the problem of “social account alignment”, which aims to
identify the same users across different social networks by
linking their multiple social accounts [Abel et al., 2013]. To
accurately establish this mapping, we employed the emerging
social service—Quora, which encourages users to explicitly
list their multiple social accounts in their Quora profiles6.
We collected candidates from Quora by the breadth-first-
search method. In the end, we harvested 172, 235 Quora user
profiles and only retained those who provided their Facebook,
Twitter and LinkedIn accounts in their Quora profiles. Based
on these mappings, we launched a crawler to collect their
historical social contents, including their basic profiles, social
posts and relations.

To build the ground truth, we employed the structural
information of users’ linkedin profiles: “Additional
Information”, which usually contains information about
users’ personal interests. Users’ interests listed in their
LinkedIn profiles are usually represented by phrases
separated by comma, which facilitates the ground truth
construction to a large extent. To obtain the representative
interests, we filtered out the interests that are liked by less
than 15 users. Finally, we obtained 74 interests7. Then we
only retained those users who expressed these interests in
their LinkedIn profiles and obtained 1, 607 users ultimately.
Figure 2 shows the user frequency distribution with respect
to the number of interests over our dataset.

6One representative example can be seen via
https://www.quora.com/Martijn-Sjoorda.

7These interests are available at http://msmt.farbox.com/.

4.2 Feature Extraction
To informatively describe users, we extracted two kinds of
features: user topics and contextual topics.
User topics. We explored the topic distributions of users’
social posts to infer users’ interests. We generated topic
distributions using Latent Dirichlet Allocation (LDA) [Blei et
al., 2003], which has been widely found to be useful in latent
topic modeling [Cimiano et al., 2009; Iwata et al., 2009].
Based on perplexity [Li et al., 2010], we ultimately obtained
89, 24, 119 dimensional topic-level features respectively over
users’ Twitter8, Facebook9 and Quora10 data.
Contextual topics. We define users’ contextual topics as
the topics of users’ connections. As it goes that “birds
of a feather flock together”, we believe that the contextual
topics intuitively reflect the contexts of users and further
disclose users’ interests. Particularly, we studied followee
connections in Twitter because of their intuitive reflection of
topics that users are concerned with. As the bio descriptions
are usually provided by users to briefly express themselves
and may indicate users’ summarized interests, we merged
the bio descriptions of a user’s followees into a document,
on which we further applied LDA model. We utilized the
perplexity to tune the dimensions of topic-level features over
these bio documents and obtained a 64 dimensional feature
space. In this work, we only explored the contextual topics
in Twitter, since the bio descriptions are usually missing in
Facebook and Quora.

4.3 On Evaluation Matrics
For the task of user interest inference, precision is of more
importance as compared to recall. We thus validated our
scheme via two metrics: S@K and P@K.
S@K: It represents the mean probability that a correct
interest is captured within the top K recommended interests.
P@K: It stands for the proportion of the topK recommended
interests that are correct.

All the experiments were conducted over a server equipped
with Intel(R) Xeon(R) CPU X5650 at 2.67GHZ on 48GB
RAM, 24 cores and 64-bit CentOS 5.4 operating system.

4.4 On Model Comparison
We compared SM2L with the following five baselines.

SVM: The first baseline is a traditional single source
single task learning method—support vector machine (SVM)
[Cortes and Vapnik, 1995], which simply concatenates the
features generated from different sources into a single feature
vector and learns each task individually. We chose the
learning formulation with the kernel of radial-basis function,
implemented based on LIBSVM [Chang and Lin, 2011].

RLS: The second baseline is the regularized least squares
(RLS) model [Kim et al., 2007], which also learns each task
individually and aims to minimize the objective function of
1

2N

∥∥yt −∑S
s=1

1
SXswst

∥∥2 + λ
2 ‖wt‖2.

8Users’ Twitter data refers to users’ historical tweets.
9Users’ Facebook data refers to users’ historical timelines.

10Users’ Quora data refers to users’ historical questions and
answers.



regMVMT: The third baseline is the regularized multi-view
multi-task learning model, introduced in [Zhang and Huan,
2012]. This model regulates both the source consistency and
the task relatedness. However, it simply assumes the uniform
relatedness among tasks.

SM2L-eu: The fourth baseline is a derivation of SM2L-e.
This method constructs the tree structure based on external
source in the same manner as SM2L-e but assigns uniform
weights to all nodes.

SM2L-iu: The fifth baseline is a derivation of SM2L-i,
which constructs the tree structure using internal source but
weights all nodes uniformly.

We adopted the grid search strategy to determine the
optimal values for the regularization parameters among the
values {10r : r ∈ {−12, · · · ,−1}}. Experimental results
reported in this work are the average values over 10-fold cross
validation. Noticeably, we tuned the K in S@K and P@K
from 1 to 10 and reported the optimal performance for each
fold. Generally, the S@K reaches the maximum at K = 10,
while K = 1 is much preferable regarding P@K.

Table 1: Performance comparison among various models.
Approaches P@K (%) S@K (%)
SVM 8.69 54.69
RLS 24.32 73.86
regMVMT 24.69 74.54
SM2L-eu 25.50 73.80
SM2L-iu 24.56 74.11
SM2L-e 25.72 74.57
SM2L-i 26.50 74.85

Table 1 shows the performance comparison between
baselines and our proposed scheme. We observed that
SM2L-i and SM2L-e both outperform the single source single
task learning SVM and RLS. This verifies the significance
of considering source consistency and task relatedness
simultaneously. Moreover, it is not unexpected that SVM
achieves the worst performance. A possible explanation
might be the insufficient positive training samples for certain
interests. For example, only 24 positive training samples
are available for the interest “surfing”. In addition, the
less satisfactory performance of regMVMT, as compared
to SM2L-i and SM2L-e, confirms that it is advisable to
characterize the task relatedness in a tree structure instead of
correlating all tasks uniformly. Besides, SM2L-i and SM2L-e
show superiority over SM2L-iu and SM2L-eu respectively,
which enables us to draw a conclusion that modeling the
relatedness strength among tasks merits our particular
attention. Last but not least, SM2L-i performs better than
SM2L-e. This finding demonstrates the importance of prior
knowledge extracted from our internal source.

Based on the practical results, the time complexity of
regMVMT is remarkably higher than that of SM2L. In
particular, regMVMT costs about 562 seconds to execute,
114 times of that taken by SM2L for each iteration. This is
mainly attributed to the computation of the inverse of a matrix
with dimension of DT , which requires a time complexity of
O(D3T 3). Compared to SM2L, it is rather time consuming

using regMVMT.

4.5 On Source Comparison
To shed light on the descriptiveness of multiple social
network integration, we conducted experiments over various
source combinations.

Table 2 shows the performance of SM2L-i over individual
social network and their various combinations. We noted that
the more sources we incorporated, the better the performance
can be achieved. This suggests the complementary
relationships instead of mutual conflicting relationships
among the sources. Moreover, we found that aggregating
data from all these three social networks can achieve better
performance as compared to each of the single source.
Interestingly, we observed that SM2L over Twitter alone
achieves a much better performance, as compared to that
using Quora or Facebook alone. This may be caused by
that we additionally extracted contextual topics apart from
user topics in Twitter, which can reveal users’ interests more
directly. It is far from incomprehensible that SM2L would
degenerate to multi-task learning when the context problem
involves only one single source.

Table 2: Contribution of individual social network and their
various combinations.

Social network combinations P@K (%) S@K (%)
Twitter 24.75 73.05
Facebook 19.59 69.74
Quora 20.97 68.19
Twitter+Facebook 25.51 74.98
Twitter+Quora 24.89 74.41
Facebook+Quora 22.52 71.80
Twitter+Facebook+Quora 26.50 74.85

5 Conclusions and Future Work
This paper presented a structure-constrained multi-source
multi-task learning scheme in the context of user interest
inference. In particular, this scheme takes both the source
consistency and the tree-guided task relatedness into
consideration by introducing two regularizations to the
objective function. Moreover, the proposed model is
able to effectively select the task-sharing features and
task-specific features by employing the weighted group
lasso. Notably, the weights can be learned from two kinds
of prior knowledge: external source and internal source.
Experimental results demonstrate the effectiveness of our
proposed scheme. Currently, we only consider studying
users’ distributed textual data. In the future, we will extend
our work to investigate users’ visual information on social
media services.
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