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ABSTRACT
In modern society, clothing has gradually become an important
beauty-enhancing product, playing an important role in human’s
social life. In fact, the key to a proper out�t usually lies in the
harmonious clothing matching. Nevertheless, not everyone is good
at clothing matching. Fortunately, with the proliferation of fashion-
oriented online communities, fashion experts can share their
fashion tips to the public by showcasing their out�t compositions,
where each fashion item (e.g., a top, a bo�om) usually has an image
and context metadata (e.g., title and category). Such rich fashion
data o�er us the new opportunity to investigate the code in clothing
matching. However, challenges co-exist with opportunities. �e
�rst challenge lies in the complicated factors, such as color, material
and shape, that a�ect the compatibility of complementary fashion
items. Second, as each fashion item involves multiple modalities
(i.e., image and text), how to cope with the heterogeneous multi-
modal data also poses a great challenge. �ird, our pilot study shows
that the relationship between fashion items is rather sparse, which
makes the traditional matrix factorization methods not applicable.
Towards this end, in this work, we propose a content-based neural
scheme to model the compatibility between fashion items based
on the Bayesian Personalized Ranking (BPR) framework, which is
able to jointly model the coherent relationship between di�erent
modalities of fashion items and their implicit preference. Extensive
experiments verify the e�ectiveness of our scheme, based on which
we also provide deep insights that can bene�t the future research.
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1 INTRODUCTION
According to the Goldman Sachs, the 2016 online retail market

of China for fashion products, including apparel, footwear, and
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(a) Composition 1. (b) Composition 2. (c) Composition 3.

Figure 1: Example out�t compositions on Polyvore.

accessories, has reached 187.5 billion US dollars1, which demon-
strates people’s great demand for clothing. In fact, apart from
physiological needs, people also have esteem needs of clothes as
dressing properly is of importance in daily life. As each out�t
usually involves multiple complementary items (e.g., tops, bo�oms,
and shoes), the key to a proper out�t lies in the harmonious clothing
matching to a great extent. However, not everyone is a natural-
born fashion stylist, which makes choosing the matching clothes
a tedious and even annoying daily routine. It thus deserves our
a�ention to develop an e�ective clothing matching scheme to help
people �gure out the suitable match for a given item and make
a harmonious out�t. Meanwhile, recent years have witnessed
the proliferation of various online fashion-oriented communities,
such as Polyvore2 and Chictopic3, where fashion experts can share
their fashion tips by showcasing their out�t compositions to the
public, as shown in Figure 1. Currently, Polyvore embraces 20
million unique hits and has more than 3 million out�ts created
per month. Moreover, clothing items on Polyvore have not only
the visual images with clean background but also rich contextual
metadata, such as titles and categories. Such tremendous volume of
out�t compositions with rich metadata naturally makes Polyvore a
wonderful venue to investigate the code in clothing matching.

In this work, we aim to investigate the practical problem of
clothing matching, without loss of generality, by particularly
answering the question “which bo�om matches the given top”. �e
problem we pose here primarily requires modeling human notion
of the compatibility between fashion items. However, modeling
such subtle notion regarding compatibility is non-trivial due to
the following challenges. First, the compatibility between fashion
items usually involves color, material, pa�ern, shape and other
design factors. In addition, human notion of compatibility is not
absolute but relative, as people can only tell that a pair of items

1h�p://www.chinainternetwatch.com/19945/online-retail-2020.
2h�p://www.polyvore.com/.
3h�p://www.chictopia.com/.
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(a) Hybrid tank top shirt. (b) Fairy Tulle Black Skirt.

Figure 2: Illustration of the importance of contextual
modality in compatibility measurement.

is more suitable to each other than other items. �erefore, how
to accurately measure the compatibility between items constitutes
a tough challenge. Second, existing works mainly focused on
measuring the compatibility based on images of items but failed to
take the contextual information of fashion items into consideration.
As a ma�er of fact, similar to visual images, contextual descriptions
also present the key features of fashion items and thus can be
helpful in distinguishing compatible fashion items. For example, as
shown in Figure 2, it maybe hard to predict whether the “Hybrid
tank top shirt” is compatible with the “Fairy Tulle Black Skirt” with
the current computer vision techniques due to their compatible
color. However, if we further take the contextual descriptions into
account, we can safely draw the conclusion that the lady skirt is not
much suitable for the neutral top shirt. �erefore, how to model the
intrinsic relatedness between the visual and contextual modalities
of the same fashion item and further boost the performance is
another crucial challenge. Last but not least, according to our pilot
study on Ployvore, only 1, 181 (7.94%) of 14, 871 fashion tops have
been paired with more than 2 bo�oms, as can be seen from Figure 3.
Such sparse relationship between fashion items makes the matrix
factorization-based methods [29, 38] not applicable and hence poses
another challenge for us.

To address these challenges, we present a content-based neural
scheme for clothing matching (i.e., matching tops with bo�oms),
as shown in Figure 4. To deal with the sparse relationship
between tops and bo�oms, the proposed scheme learns a latent
compatibility space to unify the complementary fashion items that
come from the heterogenous spaces. In particular, the proposed
scheme seamlessly integrates the multi-modal data (i.e., visual and
contextual modalities) of fashion items to comprehensively model
the compatibility among fashion items. Moreover, considering
that the factors a�ecting the compatibility among items can be
highly sophisticated, we employ the autoencoder neural model
to exploit the latent compatibility space. Meanwhile, to take full
advantage of the rich implicit semantics regarding the compatibility
among fashion items on Polyvore, we further employ the advanced
Bayesian Personalized Ranking (BPR) framework [31] to exploit
the pairwise preference between complementary fashion items (i.e.,
tops and bo�oms). Ultimately, we propose a dual autoencoder
network (BPR-DAE) for compatibility modeling, which jointly
models the coherent relationship between di�erent modalities of
fashion items and the implicit preference among them.

Our main contributions can be summarized in threefold:
• We propose a content-based neural scheme to model the

compatibility between fashion items based on the BPR frame-
work, which is able to learn the highly non-linear latent

(a) Top distribution (b) Bo�om distribution

Figure 3: Distribution of tops and bottoms in our dataset.
�e Y-axis is in the logarithmic scale.

compatibility space and unify the complementary fashion
items from heterogeneous spaces.

• We seamlessly exploit the knowledge from multiple modalities
(visual and contextual modalities) of fashion items and model
the modality relatedness to enhance the performance of
compatibility modeling among fashion items.

• We construct a comprehensive fashion dataset FashionVC,
which consists of both the images and contextual metadata
of fashion items on Polyvore. We have released our compiled
dataset, codes, and parameters4 to facilitate other researchers
to repeat our experiments and verify their approaches.

�e remainder of this paper is structured as follows. Section
2 brie�y reviews the related work. �e proposed BPR-DAE is
introduced in Section 3. Section 4 details the dataset construction
and the feature extraction. Section 5 presents the experimental
results, followed by our concluding remarks in Section 6.

2 RELATEDWORK
2.1 Fashion Analysis

Fashion domain recently has been a�racting increasing a�ention
from both the computer vision and multimedia research communi-
ties. Existing e�orts mainly focus on clothing retrieval [26], clothing
recommendation [13, 25], and fashionability prediction [24, 33].
For example, Liu et al. [25] proposed a latent Support Vector
Machine (SVM) [5] model for occasion-oriented out�t and item
recommendation, where the dataset of wild street photos was
created by human annotation. Iwata et al. [15] proposed a topic
model to recommend tops for bo�oms with a small dataset collected
from magazines. Due to the infeasibility of human annotated
dataset, several pioneering works have resorted to other sources,
where rich data can be harvested automatically. For example,
Hu et al. [14] studied the problem of personalized whole out�t
recommendation over a dataset collected from Polyvore. McAuley
et al. [27] presented a general framework to model human visual
preference for a pair of objects based on the Amazon co-purchase
dataset. �ey extracted visual features with CNNs and introduced
a similarity metric to model human notion of complement objects.
Similarly, He et al. [10] introduced a scalable matrix factorization
approach that incorporates visual signals of product images to ful�l
the recommendation task. Although these works have achieved
huge success, previous e�orts on fashion analysis mainly focus on
the visual signals but fail to take the contextual information into

4 h�p://neurostylist.farbox.com/.

http://neurostylist.farbox.com/
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Figure 4: Illustration of the proposed scheme. We employ a dual autoencoder network to learn the latent compatibility space,
wherewe jointlymodel the coherent relationship between visual and contextualmodalities and the implicit preference among
items via the Bayesian Personalized Ranking. C: category, T: title. “->” indicates the category hierarchy.

consideration. To bridge this gap, Li et al. [24] proposed a multi-
modal multi-instance deep learning system to classify an given
out�t as a popular or nonpopular one. Distinguished from the
above works, we particularly focus on modeling the sophisticated
compatibility between fashion items by seeking the non-linear
latent compatibility space with neural networks. Moreover, we
seamlessly aggregate the multi-modal data of fashion items and
exploit the inherent relationship between di�erent modalities to
comprehensively model the compatibility between fashion items.

2.2 Representation Learning
Representation learning has long been an active research topic

for machine learning, which aims to learn more e�ective represen-
tations for data, as compared to hand-designed representations, and
hence achieve be�er performance for machine learning tasks [23,
41, 42]. In particular, recently, the advances in neural networks also
propelled a handful of models, such as autoencoders (AE) [28], deep
belief networks (DBN) [12], deep Boltzmann machine (DBM) [8]
and convolutional neural networks (CNN) [22] to tackle various
problems. For example, Want et al. [37] utilized deep autoencoders
to capture the highly non-linear network structure and thus learn
accurate network embedding. Due to the increasingly complex
data and tasks, multi-view representation learning has a�racted
several research a�empts. One basic training criterion that has been
applied to multi-view representation learning is to learn a latent
compact representation that can reconstruct the input as much
as possible [36], where autoencoders are naturally adopted [6].
For example, Ngiam et al. [28] �rst proposed a structure based
on multimodal autoencoders to learn the shared representation
for speech and visual inputs and solve the problem of speech
recognition. In addition, Wang et al. [36] proposed a multimodal
deep model to learn image-text uni�ed representations to tackle the
cross-modality retrieval problem. Although representation learning
has been successfully applied to solve cross modality retrieval [4, 6],

phonetic recognition [36] and multilingual classi�cation [30],
limited e�orts have been dedicated to the fashion domain, which is
the research gap we aim to bridge in this work.

3 NEURAL COMPATIBILITY MODELING
3.1 Notation

Formally, we �rst declare some notations. In particular, we use
bold capital le�ers (e.g., X) and bold lowercase le�ers (e.g., x) to
denote matrices and vectors, respectively. We employ non-bold
le�ers (e.g., x) to represent scalars and Greek le�ers (e.g., β) to
stand for parameters. If not clari�ed, all vectors are in column
forms. Let



A


F and



x

2 denote the Frobenius norm of matrix A
and the Euclidean norm of vector x, respectively.

3.2 Problem Formulation
In a sense, people prefer to choose clothes with high com-

patibility, such as a silk pushy bow blouse plus a mini skirt or
a wool pullover plus a tweed �ap skirt, to make a harmonious
out�t. Consequently, in this work, we focus on the compatibility
modeling towards clothing matching. Suppose we have a set of tops
T = {t1, t2, · · · , tNt } and bo�oms B = {b1,b2, · · · ,bNb }, where Nt
and Nb denote the total number of tops and bo�oms, respectively.
For each ti (bi ), we use vti (vbi ) ∈ RDv and cti (cbi ) ∈ RDc to
represent its visual and contextual input features, respectively.
Dv and Dc denote the dimensions of the corresponding input
features. In addition, we have a set of positive top-bo�om pairs
S = {(ti1 ,bj1 ), (ti2 ,bj2 ), · · · , (tiN ,bjN )} extracted from the out�t
compositions on Polyvore, where N denotes the number of positive
pairs. Accordingly, each top ti has a positive bo�om set B+

i = {bj ∈
B|(ti ,bj ) ∈ S}. Let mi j denote the compatibility between top ti
and bo�om bj . In this work, we aim to propose an accurate model
to measuremi j , based on which we can generate a ranking list of
bj ’s for a given ti .
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Table 1: Fashion item examples. “->”: category hierarchy.
Id Image Category Title

1 Women’s Fashion ->
Clothing ->Tops

River Island resort light
blue denim halter neck
top

2
Women’s Fashion ->
Clothing ->Skirts ->
Mini Skirts

Plaid Ru�ed Mini Skirt

3 Women’s Fashion ->
Jeans -> Flared Jeans

MiH Jeans mid-rise
stretch-velvet �ares
jeans

3.3 Non-linear Compatibility Space
Obviously, it is not advisable to directly measure the com-

patibility between fashion items from distinct spaces due to
their heterogeneity. �erefore, we assume that there exists a
latent compatibility space that is able to bridge the gap between
heterogenous fashion items, where highly compatible fashion items
that share similar style, material or functionality should also show
high similarity. In fact, the factors contributing to compatibility
may diversely range from style and color, to material and shape.
Moreover, the relationship among these factors can be highly
sophisticated. For example, a white casual T-shirt goes well with a
black casual jeans but not a black suit, while a pair of high boots
prefers skinny leggings rather than �ared pants. Towards this
end, in this work, we further assume that the subtle compatibility
factors lie in a highly non-linear space, which can be learned by
the advanced neural network models. In particular, we employ the
autoencoder networks to learn the latent space, which has been
proven to be e�ective in the latent space learning [37].

Autoencoder which works in an unsupervised manner, consists
of two parts: the encoder and decoder. �e encoder maps the input
data to the latent representation space, while the decoder works
toward mapping the latent representation space to a reconstruction
space. Both of the encoder and decoder work based on multiple
non-linear functions. Suppose the encoder consists of K layers
of nonlinear transformation. Given the input x, the hidden
representation for each layer can be calculated as follows,

h1 = s(W1x + b1),
hk = s(Wkhk−1 + bk ), k = 2, · · · ,K , (1)

where hk is the hidden representation, Wk and bk , k = 1, · · · ,K
are the matrices of weights and biases, respectively. s : R 7→ R
is a non-linear function applied element wise5. In practice, the
biases bk can be horizontally merged into the weight matrix Wk ,
while the input x/hk can be vertically appended by an entry 1.
�erefore, to simplify the notation, we only considerWk and ignore
the bias terms in the following discussion. We treat the output of
the K-th layer as the latent representation x̃ = hK ∈ RL , where
L denotes the dimensionality of the latent representation. �en
the decoder computes inversely from the latent representation x̃
to the reconstructed representation x̂. Overall, for the input x, the

5 In this work, we use the sigmoid function s (x ) = 1
1+e−x .

autoencoder aims to minimize the reconstruction error as follows,

l (x) = 1
2



x̂ − x

2
2 . (2)

3.4 Compatibility Measure
Table 1 lists several examples of fashion items in our dataset.

Each fashion item is associated with an image, a title and several
categories in terms of di�erent granularity. Apparently, visual
signals play signi�cant roles in the compatibility measure, as many
visual factors such as color and shape are encoded by the visual
information. Moreover, we also observed that the context of each
fashion item also present important characteristics of fashion items,
such as the functionality and shape. �erefore, to comprehensively
measure the compatibility between fashion items, we seamlessly
explore the knowledge from both visual and contextual modalities.

In particular, we �rst feed the visual and contextual input features
of tops and bo�oms to four autoencoder networks Atv , Atc , Abv and
Abc , respectively. �e superscripts t andb refer to the top and bo�om.
We thus obtain the latent visual and contextual representation for ti
and bj as ṽti , c̃ti , ṽbj , c̃bj . �en the decoder computes inversely from
the latent representation to the reconstructed representation v̂ti ,
ĉti , v̂bj , ĉbj , respectively. Based on such latent visual and contextual
representations of tops and bo�oms, we can de�ne the compatibility
between top ti and bo�om bj as follows,

mi j = (1 − β)(ṽti )T ṽbj + β(c̃ti )T c̃bj , (3)

where β is the non-negative trade-o� parameter.
Inspired by [34, 35], considering the coherent relationship be-

tween items’ images and contextual metadata, we further introduce
the regularization to encourage the consistency between visual and
contextual latent representation of the same fashion item xi ,

Lmod (ṽi , c̃i ) = −ln(σ (ṽiT c̃i )). (4)

3.5 BPR-DAE
In a sense, we can easily identify the positive top-bo�om pairs as

which have been paired within the same out�ts by fashion experts.
Regarding the non-paired items (e.g., top-bo�om pairs), they may
just indicate the incompatibility between pairs or the missing
potential positive pairs (i.e., pairs may be created in the future).
�erefore, to fully take advantage of these implicit relationship
between tops and bo�oms, we naturally adopt the BPR framework.
We assume that bo�oms from the positive setB+

i are more favorable
to top ti than those unobserved neutral bo�oms. According to BPR,
we build a training set:

DS := {(i, j,k)|ti ∈ T ,bj ∈ B+
i ∧ bk ∈ B\B

+
i }, (5)

where the triple (i, j,k) indicates that bo�om bj is more compatible
than bo�om bk with top ti .

�en according to [31], we have the following objective function,

Lbpr =
∑

(i, j,k )∈DS

−ln(σ (mi jk )), (6)

where mi jk := mi j −mik , capturing the compatibility preference
between top ti , bo�om bj compared to bo�om bk , and the σ is the
sigmoid function. In addition, according to Eqn.(4) and taking the
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modality consistency into consideration, we have Lmod =∑
(i, j,k )∈DS

(
Lmod (ṽti , c̃

t
i ) + Lmod (ṽbj , c̃

b
j ) + Lmod (ṽbk , c̃

b
k )

)
. (7)

Finally, we have the following objective function,

L = Lbpr + γLmod + µLr ec + λ

2


Θ



2
F , (8)

where Lr ec = Lvr ec + Lcrec , Lvr ec = ∑
(i, j,k )∈DS

(
l(vti ) + l(vbj ) +

l (vbk )
)
, and Lcrec = ∑

(i, j,k )∈DS

(
l (cti ) + l (cbj ) + l (cbk )

)
. µ, γ , λ are the

nonnegative trade-o� hyperparameters, and Θ refers to the set of
parameters (i.e., Wk and Ŵk ). �e last regularizer term is designed
to avoid over��ing.

3.6 Optimization
Towards the optimization, the core step is to calculate the partial

derivative with respect to parameters ∂L/∂Wxy
k and ∂L/∂Ŵxy

k ,
x ∈ {t ,b}, y ∈ {v, c}. Due to the space limitation, we here only
introduce the detailed calculation for ∂L/∂Wtv

k , ∂L/∂Ŵtv
k , while

the other partial derivative can be solved in similar fashion.
Taking advantage of the back-propagation strategy, we �rst

calculate the ∂Lbpr
∂Wtv

K
, ∂Lmod

∂Wtv
K

, and ∂Lr ec
∂Wtv

K
as follows,

∂Lbpr

∂Wtv
K

= −σ (−mi jk )
∂(ṽti )
∂Wtv

K
(vbj − v

b
k )

∂Lmod
∂Wtv

K
= −γσ (−zti )

∂(ṽti )
∂Wtv

K
c̃ti

∂Lr ec

∂Ŵtv
K

= µ(v̂ti − v
t
i )
∂(v̂ti )
∂Ŵtv

K

.

(9)

As ∂(ṽti )
∂Wtv

K
and ∂(v̂ti )

∂Ŵtv
K

can be derived from v̂ti = σ (Ŵtv
K ĥtvK−1 + b̂tvK )

and ṽti = σ (Wtv
K hK−1 + btvK ), we can easily access ∂Lbpr /∂Wtv

K ,
∂Lmod/∂Wtv

K and ∂Lr ec/∂Ŵtv
K . �en we can iteratively obtain

∂Lbpr /∂Wtv
k and ∂Lmod/∂Wtv

k ,k = K , · · · , 1. Meanwhile, we
obtain the ∂Lr ec/∂Ŵtv

k and ∂Lr ec/∂Wtv
k , k = K , · · · , 1. in the

similar manner. We then employ the stochastic gradient descent to
optimise the proposed model, where the network parameters can
be updated as follows,

Wtv
k ←Wtv

k − η(
∂Lbpr

∂Wtv
k

+ γ ∂Lmod
∂Wtv

k
+ µ ∂Lr ec
∂Wtv

k
+ λWtv

k )

Ŵtv
k ← Ŵtv

k − η(µ ∂Lr ec
∂Wkv

k

+ λŴkv
k ),

(10)
where η is the learning rate.

4 DATASET AND FEATURES
4.1 Dataset

In fact, several fashion datasets have been collected for di�erent
research purposes, for instance, the WoW [25], Exact Street2Shop [9],
and Fashion-136K [16] datasets. However, most of existing released
datasets are collected from wild street photos and thus inevitably
involves clothing parsing technique, which still remains a great

Figure 5: Illustration of the most popular matchings pairs
between top and bottom categories.

challenge in computer vision domain [39, 40]. In addition, these
datasets lack the rich contextual metadata of each fashion item,
which makes it intractable to fully model the fashion items.
�erefore, to guarantee the evaluation quality and facilitate the
experiment conduction, we constructed our own dataset Fash-
ionVC by crawling out�ts created by fashion experts on Polyvore.
In particular, we �rst collected a seed set of popular out�ts on
Polyvore, based on which we tracked 248 fashion experts. We then
crawled the historical out�ts published by them, based on which
we construct the ground truth for positive item pairs. Considering
that certain improper out�ts can be accidentally created by users on
Polyvore, we also set a threshold z = 50 with respect to the number
of “likes” for each out�t to ensure the quality of the positive fashion
pairs. Finally, we obtained 20, 726 out�ts with 14, 871 tops and
13, 663 bo�oms. For each fashion item, we particularly collected its
visual image, categories and title description.

4.2 Insights
Due to the limited space, we only show the most popular

matching pairs of top and bo�om categories6 in our dataset in
Figure 5. Each circle denotes a fashion category, where the light
blue refers to the top categories and the dark blue denotes the
bo�om ones. �e areas of the circles and the widths of the links are
proportional to the number of fashion items with the given category
and the co-occurrence frequency between categories, respectively.
It can be seen that knee length skirts, sweaters and T-shirts are
the most compatible items, as they are all matched with various
other category items. In addition, we found that coats go more with
day dresses while sweaters match more knee length skirts. �is
also implies that the contextual information regarding each fashion
item can be helpful in cloth matching.

4.3 Feature Extraction
Visual Modality. In this work, we take advantage of the

advanced deep convolutional neural networks, which has been

6Here we only consider the category at the �nest granularity for each item
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(a) Training loss (b) AUC

Figure 6: Training loss and AUC with respect to each epoch.

proven to be the state-of-the-art model for image representation
learning [2, 20, 43]. In particular, we chose the pre-trained ImageNet
deep neural network provided by the Ca�e so�ware package [18],
which consists of 5 convolutional layers followed by 3 fully-
connected layers. We fed the image of each fashion item to the
CNNs, and adopted the fc7 layer output as the visual feature.
�erefore, for each item, its visual modality is represented by a
4096-D vector.

Contextual Modality. Considering the short length of such
contextual information, we utilize the bag-of-words scheme [17],
which has been proven to be e�ective to encode contextual metadata
[7]. We �rst constructed a style vocabulary based on the categories
and the words in all the titles in our dataset. As such user-generated
metadata can be inevitably noisy, we thus �ltered out the categories
and words that appeared in less than 5 items as well as the words
with less than 3 characters, which are more likely to be noise.
We ultimately obtained a vocabulary of 3, 529 phrases, and hence
compiled the contextual modality of each fashion item with a 3, 529-
D boolean vector.

5 EXPERIMENT
5.1 Experiment Settings

We separate the positive pair set S into three chunks: 80% of
tripes for training, 10% for validation, and 10% for testing, which
are denoted as Strain , Svalid and Stest , respectively. �en we
generate the triple set DStrain , DSvalid and DStest according to
Eqn.(5). In particular, for each positive top-bo�om pair ti and bj ,
we randomly sample M bo�oms bk ’s to construct M triples (i, j,k),
where bk /∈ B+

i and M is set as 3. We adopt the widely used metric
AUC (Area Under the ROC curve) [32, 44], which is de�ned as,

AUC = 1
|T |

∑
i

1
E(i)

∑
(j,k )∈E(i )

δ (mi j > mik ), (11)

where the evaluation pairs per top i are de�ned as,
E(i) := {(j,k)|(i, j) ∈ Stest ∧ (i,k) /∈ S}. (12)

δ (b) is the indicator function that returns one if the argument b is
true and zero otherwise.

For optimization, we employ the stochastic gradient descent
(SGD) [1] with the momentum factor as 0.9. We adopt the
grid search strategy to determine the optimal values for the
regularization parameters (i.e., λ, µ,γ ) among the values {10r |r ∈
{−5, · · · ,−1}}. In addition, the mini-batch size, the number of
hidden units and learning rate for all methods were searched in
[32, 64, 128, 256, 512, 1024], [128, 256, 512, 1024], and [0.001, 0.01, 0.1],
respectively. �e proposed model was �ne-tuned based on training

Table 2: Illustration of the most popular tops and bottoms.
Rank 1 2 3 4 5

Top

Bot-
tom

set and validation set for 30 epochs, and the performance on testing
set was reported. We experimentally found that the proposed model
achieves the optimal performance with K = 1 hidden layer of 512
hidden units. All the experiments were conducted over a server
equipped with four NVIDIA Titan X GPUs.

We �rst experimentally verify the convergence of the proposed
learning algorithm. We show the changes of the objective function
in Eqn.(8) and the training AUC with one run of the training
algorithm in Figure 6. As we can see, both values �rst change
rapidly within a few epochs and then tend to go steady �nally,
which well demonstrates the convergence of our model.

5.2 On Model Comparison
Due to the sparsity of our dataset, where matrix factorization

based methods [29, 38] are not applicable, we only consider
the following content-based baselines regarding compatibility
modeling to evaluate the proposed model BPR-DAE.

POP: We utilize the “popularity” of bo�om bj to measure its
compatibility with top ti . �e “popularity” is de�ned as the number
of tops that has been paired with bj , and we thus have,

mi j = |(i ′, j)|(i ′, j) ∈ Strain |. (13)
RAND: We randomly assign the scores of mi j and mik to

evaluate the compatibility between items.
RAW: We measure the compatibility score between top ti and

bo�om bj based on the similarity between their raw features
directly as,

mi j = (vti )T vbj + β(cti )T cbj . (14)
IBR: We choose the image-based recommendation method

proposed by [27], which aims to model the relationships between
objects based on their visual appearance. �is work also learns
a visual style space, in which the retrieval of related objects is
performed by nearest-neighbor search. Di�erent from our model,
this baseline learns the latent space by linear transformation and
consider positive samples and negative samples independently.
Moreover, this method only focuses on the visual information.

ExIBR: We extend IBR to handle both the visual and contextual
data of fashion items, where we modify the distance function
between top ti and bo�om bj in [27] as follows,

di j =



(vti − v

b
j )Yv




2

2
+ β




(cti − c
b
j )Yc




2

2
, (15)

where Yv ∈ RDv×K ′ and Yc ∈ RDc×K ′ are the projection matrices
for visual and contextual modality input, respectively. K ′ refers to
the dimension of the style space.

Table 3 shows the performance comparison among di�erent
approaches. From this table, we have the following observations: 1)
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Table 3: Performance comparison of di�erent approaches in
terms of AUC.

Approaches AUC
POP 0.4206
RAND 0.5094
RAW 0.5494
IBR 0.6075
ExIBR 0.7033
BPR-DAE 0.7616

POP achieves the worst performance, which propels us to further
check the popular items in our dataset. Table 2 shows the �ve
most popular tops and bo�oms, respectively. We noticed that the
popular fashion items are all in the basic style, such as plain T-
shirts and jeans, which maybe due to the fact that they can go with
many other items. �erefore, we can easily �nd the limitations
of POP method. For example, most of the popular bo�oms are
jeans, which maybe not suitable for professional tops and sport
out�ts. �erefore, it is not advisable to adopt recommendation
strategy based on popularity. 2) ExIBR and BPR-DAE both
outperform the visual-based baseline IBR, which con�rms the
necessity of considering the contextual modality in compatibility
modeling. 3) BPR-DAE shows superiority over ExIBR. One
possible explanation is that the highly sophisticated compatibility
space would be be�er characterized by the autoencoder neural
networks rather than the linear transformation.

5.3 On Component Comparison
To verify the e�ectiveness of each component of our model, we

also compared BPR-DAE with the following methods.
BPR-DAE-Norec: To check the component that regularizes the

reconstruction error, we removed the Lr ec by se�ing µ = 0.
BPR-DAE-Nomod: To check the modality regularizer compo-

nent that controls the consistency between latent representations
of di�erent modalities, we removed the Lmod by se�ing γ = 0.

BPR-DAE-No: We removed both the reconstruction and modal-
ity regularizers by se�ing µ = 0 and γ = 0.

Table 4 shows the performance of our model with di�erent
component con�gurations. It can be seen that BPR-DAE outper-
forms all the other derivative models, which veri�es the impact of
each component in our model. For example, we noticed that BPR-
DAE shows superiority over BPR-DAE-Nomod, which implies
that the visual and contextual information of the same fashion
items does share certain consistency in terms of characterizing the
fashion items. Besides, the worse performance achieved by BPR-
DAE-Norec as compared to BPR-DAE suggests that the latent
compatibility space can be helpful to reconstruct the fashion items.

Table 4: Performance comparison of our model with
di�erent component con�gurations with respect to AUC.

Approaches AUC
BPR-DAE 0.7616
BPR-DAE-Norec 0.7533
BPR-DAE-Nomod 0.7539
BPR-DAE-No 0.7421

Figure 7: Performance of the proposed models on tops of
di�erent categories. “All” refers to the whole testing set.

5.4 On Modality Comparison
To verify the e�ectiveness of multi-modal integration, we also

conducted experiments over di�erent modality combinations. In
particular, we adapt our model to BPR-DAE-V and BPR-DAE-
C to cope with the visual and contextual modality of fashion
items, respectively, by removing the other unnecessary autoencoder
networks as well as the Lmod regularizer. Figure 7 shows the
comparative performance of di�erent approaches with respect to
AUC. We observed that BPR-DAE outperforms both BPR-DAE-V
and BPR-DAE-C, which suggests that the visual and contextual
information does complement each other and both contributes
to the compatibility measurement between fashion items. It is
surprising that BPR-DAE-C is more e�ective that BPR-DAE-V.
One plausible explanation is that the contextual information is
more concise to present the key features of fashion items.

To intuitively illustrate the impact of contextual information,
we show the comparison between BPR-DAE and BPR-DAE-V on
testing triples in Figure 8. As can be seen, contextual metadata
works be�er in cases when the given two bo�om candidates bj
and bk share similar visual signals, such as color or shape, where
visual signals could be insu�cient to distinguish the compatibility
between them with the given top ti . Nevertheless, such contextual
information may also lead to certain failed triples due to the
category matching bias, especially when visual signals of bo�om
candidates di�er signi�cantly. For example, it is popular to match
blouses with knee length skirts according to our dataset, which may
thus lead to the �rst failed testing triple in the right most column.

To gain more detailed insights, we further check the performance
of the proposed models on the seven most popular top categories.
As can be seen from Figure 7, BPR-DAE still consistently shows
superiority over both BPR-DAE-V and BPR-DAE-C on each of
the seven top categories. Meanwhile, we found that contextual in-
formation signi�cantly improves the performance on top categories
such as “Jacket” and “Coat”, compared to “T-shirt” and “Cardigan”
categories. One possible explanation is that the matching for coats
and jackets would be more complicated [3] due to the fact that they
serve people in more seasons and thus apart from the common color
and pa�ern factors, we also need further consider other factors such
as various material (e.g., silk and leather) and length (e.g., long and
short). �ese factors may not be easy-learned from visual signals
but can be e�ectively captured by the contextual information. On
the contrary, regarding tops in basic styles, such as T-shirts and
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Figure 8: Illustration of the comparison between BPR-DAE and BPR-DAE-V on testing triples. All the triples satisfymi j > mik .
Due to the limited space, we only list the key phrases of items’ contextual metadata.

Figure 9: Performance of di�erent models with respect to
MRR at di�erent numbers of the bottom candidates T .
cardigans, where color and shape factors play more important roles
in matching, the visual signal is more powerful than the context.

5.5 On Complementary Fashion Item Retrieval
To e�ciently evaluate the proposed BPR-DAE towards the

complementary fashion item retrieval, we adopted the common
strategy [11, 21] that feeds each top ti appeared in Stest as a query,
and randomly selects T bo�oms as the candidates, where there is
only one positive candidate. �en by passing them to the trained
neural networks, ge�ing their latent representations and calculating
the compatibility scoremi j according to Eqn.(3), we can generate a
ranking list of these bo�oms for the given top. In our se�ing, we
care about the average position of the positive bo�om in the ranking
list and thus adopt the mean reciprocal rank (MRR) metric [19]. In
total, we have 1, 954 unique tops in Stest , among which 1, 262 tops
have never appeared in Strain or Svalid .

Figure 9 shows the performance of di�erent models in terms
of MRR at di�erent numbers of the bo�om candidates T . It is
worth mentioning that we dropped the POP baseline here due
to the fact that the majority of tops share the same popularity of
1, which makes it intractable to generate the ranking. As can be
seen, our model shows superiority over all the other baselines
consistently at di�erent numbers of bo�om candidates, which
veri�es the e�ectiveness of our model in complementary fashion
item retrieval and coping with the cold start problem. Certain

Figure 10: Illustration of the ranking results for given
testing tops. �e bottoms highlighted in the red boxes are
the positive ones.

intuitive ranking results for testing tops can be found in Figure 10.
We noticed that although BPR-DAE sometimes failed to accurately
rank the positive bo�om at the �rst place, the neutral bo�oms
ranked before the positive one are also compatible with the given
top, which is reasonable in the real application.

6 CONCLUSION AND FUTUREWORK
In this work, we present a content-based neural scheme (BPR-

DAE) for compatibility modeling towards clothing matching (i.e.,
matching the tops and bo�oms), which is able to jointly model the
coherent relationship between di�erent modalities of fashion items
and the implicit preference among items via a dual autoencoder
network. In addition, we constructed a comprehensive fashion
dataset FashionVC, consisting of both the images and contextual
metadata of fashion items on Polyvore. Experimental results
demonstrated the e�ectiveness of our proposed scheme and veri�ed
the advantages of taking the contextual modality into consideration
in terms of compatibility modeling. Surprisingly, we found
that contextual modality even shows superiority over the visual
modality, especially towards complicated tops (e.g., coats) rather
than the basic ones (e.g., T-shirts). Currently, we fail to explore the
category hierarchy to further enhance the compatibility modelling,
which can be the future work direction.
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