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Due to the well-known semantic gap, content based image retrieval task is still a challenge problem. The
performance of image ranking highly depends on feature representation. In this paper, trying to make a
more discriminative feature, we propose a multi-graph based non-negative feature embedding framework
for image ranking. In this framework, various image features are embedded into a unified latent space
by a learned graph based non-negative multi-view embedding model. In this model, a multi-graph based

Keywords: regularization term, which discovers the intrinsic geometrical and the discriminating structure of the data
Image retrieval space, is imposed into the non-negative matrix factorization. The framework learns to find an optimized
Ranking combination of different Laplacian matrices to approximate the intrinsic manifold automatically. Mean-

Multiview embedding while, multiple anchor graphs are utilized to reduce the complexity of computational. Finally, ranking is

conducted according to the relevance score inferred by a Markov random field. Extensive experiments

prove the effectiveness of proposed method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, with the rapid development of internet
technology as well as multimedia services, an increasing number
of images have been generated and shared on the web like Flicker
and Picasa. The fast growing number of web images necessitates
effective and efficient image retrieval technologies. As one branch
of image retrieval, Content-Based Image Retrieval (CBIR), a tech-
nique of retrieving images from large scale image dataset by image
query, has been studied extensively [27,40,48,51,53].

Having a better comprehension and representation of query and
candidate images should lead to a better retrieval result. The cur-
rent CBIR methods are usually based on low level visual features
(such as texture, color, pixel, etc.), which always fail to describe
high-level concepts. There is a famous semantic gap that exists be-
tween the low-level image features captured by machine and the
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high-level visual concepts perceived by human. Due to the seman-
tic gap, the CBIR problem, whose retrieval performance depends
on the feature representation, is still one of the most challenging
academic problems.

To overcome this problem, some works introduced the multi-
model based methods into CBIR [26,43,54]. These methods
assumed that using different features which were generated
by different visual models have different representation of the
underlying data structure. In this way, they tried to bridge the se-
mantic gap by looking for the complementary of various features.
Graph-based multi-view manifold ranking (GMMR) framework is a
well-known multi-model image retrieval framework [27,40,48,53].
The graph-based ranking model, which ranks data samples with
respect to the intrinsic manifold structure, is more meaningful for
capturing the semantic relevance degrees. In further, the graph-
based multi-view manifold ranking framework builds a intrinsic
manifold structure by considering different pair-wise relationships
and selecting an optimal combination of manifolds automatically.
For the GMMR, some works [27,40] generated a more discrimina-
tive and robust representation for queries and candidate images,
and some works utilized the manifold ranking model to assign
each data sample a relative ranking score directly [48,53]. Both of
these methods tried to have a better understanding of queries and
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Fig. 1. The framework of the proposed method. In this framework, a learned graph based non-negative multi-view embedding model is utilized to embed multiple image
features into a unified latent space and generate the new embedded features about images, then a Markov Random field is constructed by considering the new feature,

finally the candidate images are ranked according to the relevance scores.

candidate images by utilizing multiple features that were gener-
ated by different models. However, the graph-based multi-view
manifold ranking framework has its own drawbacks in interns of
handling large scale datasets. It has expensive computational cost,
in both graph construction and ranking stage.

In this paper, we propose a ranking method for large scale con-
tent based image retrieval. In this method, a graph based non-
negative multi-view embedding model is proposed to embed mul-
tiple image features into a unified latent space. In this model, a
multi-graph based regularization term which discovers the intrin-
sic geometrical of the data space is imposed for reinforcing the
non-negative matrix factorization. By providing the graph Lapla-
cians of various features, the framework learns to find an optimal
combination of these Laplacians to approximate the ideal intrinsic
manifold. Further, to make the embedding model more efficient, a
scalable anchor graph is introduced. Finally, images are ranked ac-
cording to the relevance scores inferred by a Markov random field.
The Fig. 1 shows the illustration of the proposed framework. Exten-
sive experiments are done to prove the effectiveness of proposed
method.

The contribution of this paper is in two folds: First, a multi-
view embedding based image ranking framework is proposed. In
this framework, a multi-graph based multi-view non-negative em-
bedding model is obtained by unsupervised learning. The multi-
view embedding model is able to map the multiple image features
into a optimal unified latent space. Second, to solve the problems
of large storage requirement and extensive computation in multi-
view embedding model, an anchor graph based efficient graph
construction method is proposed.

2. Related work

In this section, we briefly introduce the related work on image
ranking and graph based matrix factorization respectively, which
are highly related to our work.

2.1. Query and image ranking

Query prediction is a meaningful problem in information re-
trieval. One of challenges in CBIR is to convert a textual query
into an amenable form for visual search. Image annotation and la-
beling tasks reverse this problem and tag images with key words
that can be used for retrieval [21,41,4G]. Recently, the problem
of complex query has been widely studied. Many of the im-
provements showed stem from exploiting query term re-weighting
[2-4,23] and query reduction [1,21,22] approaches. Bendersky and
Croft [2] developed a technique that assigned weights to identify

key concepts in the verbose query, which had been observed to
improve the retrieval effectiveness. In [31], a heterogeneous prob-
abilistic network framework was proposed. In the framework, the
authors integrated three layers of relationships, i.e., the semantic-
level, cross-modality level as well as visual-level. These mutually
reinforced layers were established among the complex query and
its involved visual concepts, by harnessing the contents of images
and their associated textual cues. Kumaran and Allan [21,22] pro-
posed an interactive query induction approach, which presented
the users with the top 10 sub-queries along with corresponding
top ranking snippets. In [33], a query-adaptive graph-based learn-
ing approach was proposed to estimate the images relevance prob-
abilities. This method was evaluated by three applications, namely,
image meta search, multilingual image search, and Boolean image
search. Recent work [11] proposed a fast democratic aggregation
and query fusion method, which embedded weak spatial context
in the kernel construction to depress co-occurrence caused by lo-
cal feature detector.

Graph-based methods performed well in image re-ranking
[6,18,21], like emotional image analysis, video annotation and 3D
object retrieval. In [45,52], the authors investigated the perfor-
mance of different features on different kinds of images, and
adopted a multi-graph learning framework to solve the image re-
trieval problem. In [10], the authors proposed a method that con-
structed multiple hypergraphs for a set of 3-D objects based on
their 2-D views and then used these hypergraphs to recognize
and retrieval the 3-D objects. In [50], Yang et al. discussed that
such graph-based methods are sensitive to the bandwidth param-
eter of Laplacian matrix. In work [49], Yang et al. proposed an Lo-
cal Regression and Global Alignment (LRGA) based semi-supervised
learning method for image retrieval. In this model, the Laplacian
matrix were learned by a local linear regression instead of calcu-
lating the pair-wise distances in the whole dataset. In [47], the au-
thors proposed the Bregman divergence to solve Co-Ranking prob-
lem(CoR) by leveraging fruitful information from manual semantic
labeling (i.e.,tags) and associated images, which leaded to the tech-
nique of co-ranking images and tags, then a representative method
that aimed to explore the reinforcing relationship between im-
age and tag graphs was introduced. Nie et al. [32,34] proposed
a scheme that was able to enrich textual answers in Question
and Answer (QA) with appropriate media data. Unfortunately, such
a graph-based approach has very high computational complexity,
due to the computation of the distance between all image pairs
and the computation of the pseudo-inverse of adjacency matrix.
Frequent pattern mining was used for removing outliers in [35].
Each image was described as a transaction (or pattern). A pattern
consisted of items which were the visual words located on images
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interest points. Voravuthikunchai et al. [39] proposed frequently
closed patterns which gave excellent re-ranking results. In [12], the
authors gave graph mining techniques enriched queries by identi-
fying query concepts and adding relevant synonyms as well as se-
mantically related terms.

2.2. Graph based matrix factorization

The Non-negative Matrix Factorization (NMF) method was pro-
posed to learn a low-rank representation of objects like human
faces and text documents [24,25]. Meanwhile the NMF has at-
tracted considerable attention for learning the effective represen-
tation of images. However, NMF performs this learning in the Eu-
clidean space. It fails to discover the intrinsic geometrical and the
discriminative structure of the data space. Jin et al. [17] proposed
a low-rank matrix factorization, in which a manifold regulariza-
tion term was added to the TSVD framework to leverage regu-
larization term and matrix factorization. Cai et al. extended the
transitional NMF to graph regularized Non-negative Matrix Fac-
torization (GrNMF) in [5] to avoid this limitation by incorporat-
ing a geometry-based regularizer. Wang et al. [42] proposed an
new unified feature selection and graph regularization algorithm,
namely Adapt GrNMF. Guo et al. [13] provided an novel method of
Robust Non-negative Matrix Factorization with discriminate abil-
ity (RNMFD) to tackle several problems, i.e. sensitivity to noise
data, trivial solution problems, and ignoring the discriminative in-
formation. Lin and Pang [27] learned a sparse representation and
proposed a method called Graph Regularized Non-negative Matrix
Factorization with Sparse Coding (GRNMF_SC). Tao et al. [38] uti-
lized multiple graph integration for low rank matrix approxima-
tion to boost the low decomposition performance caused by graph
selection.

The NMF is actually an unsupervised method without making
use of prior information of data, He et al. [14] not only utilized the
local structure of the data by graph Laplacian, but also incorpo-
rated pairwise constraints generated among labeled data into NMF
framework. Sun et al. [36] proposed a novel matrix decomposi-
tion algorithm, called Graph regularized and Sparse Non-negative
Matrix Factorization with hard Constraints (GSNMFC), which in-
corporated a graph regularizer and hard prior label information
as well as sparseness constraints as additional conditions to un-
cover the intrinsic geometrical and discriminative structures of the
data space. Lu et al. [30] extended the recently proposed low-rank
matrix with manifold regularization (MMF) method and adaptive
graph regularizer (LMFAGR), which simultaneously seeked graph
weight matrix and low-dimensional representations of data and in-
corporated both of them into an unified framework. The standard
NMF adopts a least square error function as the empirical likeli-
hood term in the model, which is sensitive to the noise and out-
liers, Feng et al. [9] proposed an noise robust NMF method named
as Locally Weighted Sparse Graph regularized Non-negative Ma-
trix Factorization (LWSG_NMF) by reformulating the empirical like-
lihood term of the standard NMF and imposing a sparse noise term
explicitly.

3. Graph based non-negative multiview embedding for ranking
3.1. Multiple graph based non-negative embedding

Given N images and their feature vector set X = {X;},.n=
1,...,N. For each image, k different types of features are extracted.
These k features are further concatenated into an vector as the fea-
ture of the image, and thus it is x; = [xi(]),...,xi(k)] € R?*1, where
xi(") is the kth feature of data. The feature vectors of N images are
organized as a non-negative matrix X = [X;, ..., Xy] € RQXN , where

the nth column x, of X is the feature vector of the nth data point.
The aim of an non-negative embedding model is to locate two
non-negative matrices B and H whose product approximates well
the original matrix as:

argmin || X — BH||?, (1)
B.H

where B e REXP can be regarded as a set of basis vectors, and
He RiXN can be regarded as the new representation of images that
coding with respects to the basis B. In this way, features with dif-
ferent modalities are encoded into a new feature space by the non-
negative embedding model.

However, the aforementioned model has some drawbacks. At
first, the concatenation of different features deals with all the
views equally and ignores the correlation of different features; sec-
ond, it fails to discover the intrinsic geometrical and the discrimi-
nating structure of data space, which is essential for image repre-
sentation.

In this paper, to overcome the drawbacks, the following graph
regularization term can be added into the embedding model:

1 N
OH) =5 > Il hn = hm]|*Wam

n,m=1
=Tr(HDH") — Tr(HWHT)
=Tr(HLH"), (2)

where h is a column of HL W € RN VN is an affinity matrix, D €
RN * N js a diagonal matrix, the entries of which are column sums
of W, i.e., Dpm = Z’,}’ﬁ Whim, and L =D —W is the graph Laplacian
matrix. The graph regularization term can measure the smoothness
of feature representation in H. By minimizing this regularization
term, two feature vectors h, and hy, are expected close to each
other if the original feature x, and x;, are close (i.e., Wy, is big).
By using the graph regularizer, intrinsic geometry information of
data distribution can be imposed.

For K different features, there might be K different graph Lapla-
cian candidates [Lq,...,Lg]. Assuming that the ideal hidden ge-
ometric structure can be explicated by an optimal linear com-
bination space of these initial different manifolds. Theoretically,
the integration of multiple manifold structures can be formulated
as

K
L= Z Velg
g=1

K
st. Y y=1,920,

g=1

(3)

where y¢ is the weight of graph Laplacian L,. For each feature, the
heat kernel weighting is utilized to build the affinity matrix We:

Wg _ e—(Hxﬁ—xﬁ.,”Z)/a’ if (n’ m) €¢€, (4)
meo, otherwise
where x§ is an specific type of feature and o is a predefined con-
stant. It is worth noting that for each data point x;, we find its
& nearest neighbors and make connection between x; and these
neighbors in affinity matrix W.
Combining the multiple graph based regularizer with the orig-
inal non-negative embedding model, the loss function is formed
as

K
OB.H.y) =X —BH||> +a_ yTr(HLH") + B||y||*
g=1
=Tr(X"X) — 2Tr(X"BH) + Tr(H"B"BH)
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K
+a ) yTr(HLH") + By |I?
g=1
K
st.B>0,H>0,) y;=1,1>0. (5)
g=1

The L2 norm regularization term ||y ||? is added into the model to
avoid the overfitting to a single graph.

3.2. Optimization

The objective function is not convex if both the matrices B and
H are needed to be optimized. Here we solve the problem by ini-
tializing (B, H) as the non-negative matrix factorization of X, then
optimizing (B, H) and y alternatively.

On optimizing B and H, by fixing y, the problem can be trans-
formed as follows:

K
argmin ||X — BH||? + & ) ygTr(HLgH")
BH a1

. (6)
st.B=0,H>=0,) y=1y,>0.

g=1
We deploy an Lagrange multiplier for constraint condition and
then use the KKT condition to solve the problem [5]. The above
equation leads to the following updating rules:

XHT
S ™)
o BX oy yHW
“' T BTBH+ay ygHD,

The optimization of y is solved by fixing (B, H), and the prob-
lem is transformed into:
K
argmin Y y,Tr(HLH") + (B/)||y ||
14
g=1

(8)

K
st. Y ve=1.7>0.

g=1
This is a constrained quadric programming problem, and can be
easily solved by a quadric optimization solver.

3.3. Scalable graph construction

The aforementioned model has two limitations, the first one is
the strategy of building the graph, which needs to search all the
pair-wise relationships in the whole dataset, the second one is
the requirement of solving the matrix multiplications Xy ¢HWjs in
optimization. Both of them are time-consuming and have a large
storage requirement.

Inspired by work [29,44], we propose an anchor graph model
to overcome the shortcomings in two perspectives: scalable graph
construction and efficient embedding computation.

Here we introduce how to utilize anchor graph to model the
data. Given a dataset X =[xy, ...,xy] € R2*N with N samples in D
dimension, we aim to obtain a set of representative anchors U =
[ug,...,uy] € R2K in the same feature space with original sam-
ples. Then each samples in the manifold can be locally approxi-
mated by a linear combination of its neighbor anchors:
argmin || x; — Uz

Zl

K

S.t.ZZﬁ=1,ZﬁEO, (9)
j=1

where Z = [zy,...,2zy] € RN is a weight matrix that measures the
potential relationships between the data samples and the anchors.
Meanwhile, the data samples in the original feature space are
mapped into a new space where U can be seen as a set of basis
and Z is the K dimensional representations of the data samples.

In practice, the anchors are usually selected by a clustering
method such as K-means and local weights Z are defined by

o exp (—t2(x;, uj)/A)
T exp (—2(xi ) /)

where t(., -) is a distance function, A is the bandwidth parameter
and K is the number of anchor points that K « N.

Based on the local weights Z, the adjacency matrix between
data samples can be derived

w=7z (11)

From Eq. (11), we can see that if two samples are correlative (w;; >
0), they should share at least one common anchor point, otherwise
w;; = 0. Since the matrix Z is non-negative and highly sparse, the
matrix W is also a positive semi-definite and sparse matrix, which
is consistent with fact that most of the points in the graph only
have limit number of neighbors.

Compared with the graph construction in Section 3.1, the an-
chor graph only needs to build the pair-wise relationships be-
tween samples and anchors. So the construction has a complexity
in O(NK), since K « N, the construction is linear to the dataset.

When solving the matrix multiplication, the problem can be
converted into Xy ¢HZ'Z; with complexity in O(PN + KN), which
is also linear to the dataset.

(10)

3.4. Deep learning features

Recent years have witnessed an important breakthrough in
machine learning methods, which are known as deep learning.
The deep learning methods include a family of machine learn-
ing algorithms that attempting model high-level abstractions in
data by employing deep architectures composed of multiple non-
linear transformations [31]. Recently deep learning techniques have
achieved some success in computer vision and other applications
[20,28,37]. In work [7], the experiments suggest that the deep
models that are fully supervised trained on a fixed large scale im-
age dataset can be re-purposed to novel generic task. In this paper,
we try to utilize two deep learning models that are trained on the
ImageNet dataset! to generate image features for feature embed-
ding.

The AlexNet model. The first model we utilize here is the
Alexnet model [20] from CAFFE [16]. The model is trained on the
ImageNet ILSVRC-12, which contains more than 1 million images
that belongs to 1000 categories. The Alexnet contains 8 learned
layers, which are composed by 5 convolutional layers and 3 fully-
connected layers, together with several ReLU activation and max
pooling layers. In this paper, the output of the last fully connected
layer with 1000 dimension is extracted as image representation.
The L2-norm and Signed Square Root are applied for feature nor-
malization.

The Network in Network (NIN) model. The second model we
utilize is the NIN-Imagenet model [28] from CAFFE. Different from
the conventional convolutional layers, which uses linear filters fol-
lowed by a non-linear activation function to scan the input, the
NIN builds micro neural networks, which are named inception,
with more complex structures to abstract the data within the re-
ceptive field. By using inception, people can use much less param-
eter to build a more complex deep learning model. The NIN model

1 http://www.image-net.org/ .
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contains 12 learning convolutional layers, as well as several ReLU
activation and pooling layers. The output of last average pooling
layer with 1000 dimension is taken as image representation. The
L2-norm and Signed Square Root are applied for feature normal-
ization.

3.5. Matching score inference

In this paper, we employ a Markov Random Field (MRF)
[19] model to infer the matching scores of candidate images to the
query.

The configuration of MRF is defined as below. The latent vari-
able y is the matching score of an image, which stands for how
relevance the candidate image is to the query. The single site po-
tential is deﬁned as:

wl(yl) = m

where t is the initial score of the image, t = ef for the query while
t = e~# for candidate images, and B is an empirically chosen con-
stant.

The pairwise potential of MRF is defined as:

i i yj) = |J’i —YJ|Si,j, (13)
where s; ; is the similarity between two images. The similarity s; ;
between two images is defined as

Il hi—hy 115
Sij = eXP<—M12 ) (14)

where h; and h; are the unified features of images after multiview
embedding, o is empirically chosen as the mean distance of all
data. The energy function is defined as follows:

€W) =Y Vi) + YD iy (15)
i i

(12)

and we aim to maximize the following formulation:

p(yIM) = fexp( €()). (16)

where Z is the normalization parameter.

The loop belief propagation method [15] is employed to op-
timize the objective function. After optimization, the belief of
matching score is obtained. The retrieval results are ranked accord-
ing to the matching scores.

4. Experiments
4.1. Experimental settings

Experiments were conducted on the a-Pascal dataset [8]. The a-
Pascal dataset contains 12,965 images in variety of natural poses,
viewpoints and orientations. The image dataset consists of 6340
training images and 6335 testing images. Each image belongs to at
least one of 20 semantic classes such as people, bird, cat, cow, etc.

To evaluate the performance of our framework, we conducted
our image ranking experiments on the testing images set of a-
Pascal. As some of classes have few related images, for better com-
parison, we only chose those classes with more than 100 related
images. We thus selected the 16 classes: aeroplane, bicycle, bird,
boat, bottle, car, cat, chair, diningtable, dog, horse, motorbike, person,
pottedplant, sofa and tvmonitor. For each class, we conducted the
image retrieval on the testing dataset. By deploying our framework
on the testing dataset, we first computed the relevance scores of
testing images and queries, and then utilized the relevance scores
for ranking. In the image retrieval task, the queries for retrieval are
important. In this paper, the query images were generated as the
positive images of each semantic class.

1.0

I AlexNet ] NIN BBl MGNE |

0.8 |

NDCG@P

0.4

20 40 p 60 80 100

Fig. 2. The average NDCG performance of comparative method in P from 10 to 100.

We conducted the experiments of using our multi-graph based
Non-negative embedding (MGNE) to retrieve image. We also con-
ducted the experiments of retrieve by using AlexNet and Network
in Network (NIN) feature individually as comparison experiments.

4.2. Evaluation measures

Generally, the image retrieval results are displayed screen by
screen. Too many images in a screen may confuse the users and
drop the experience evidently. Images in the top pages attract
the most interests and attentions from users. Therefore, the pre-
cision at P metric is significant to evaluate the image retrieval
performance. In this paper normalized discounted cumulative gain
(NDCG) is used to evaluate the performance of different methods.
NDCG is a standard measure for evaluating ranking algorithms.
NDCG of the first P images in a ranked image list is defined as
below:

DCGp

NDCGp = 1DCC," (17)
where
zre‘ _‘l
DCGp = Z GG 1) (18)
P
211
IDCGp = Z] G (19)

In this paper, re; € {0, 1} denotes that whether the candidate im-
age is related to the query, re; = 1 means that the image and the
query is relevant, and re; = 0 means that the image and the query
is irrelevant. The first 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 images
were evaluated by NDCG in our experiments.

4.3. Experimental results

In this experiment, we set each training image from the se-
lected 16 classes as the query image and retrieved the related im-
ages in the testing dataset. The retrieval performance was aver-
aged.

The experimental results of all the comparison methods are
shown in the Fig. 2. In our experiments, we set the number of
anchor points as 1500. In the later part we will show the im-
pact of the number of anchor point to the experiment perfor-
mance. In Fig. 2, we can see that our proposed multi-graph based
non-negative embedding method achieves the best performance
over three methods for comparison. The performance of proposed
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method is 0.75 at P = 10 and drops to 0.55 at P = 100, which out-
performs the AlexNet and NIN method by 12.3% and 5.3% respec-
tively. The second best result is NIN, whose performance is 0.72
at P = 10 and drops to 0.51 at P = 100. The experimental results
may suggest that although the deep learning can generate a good
representation for images, the semantic gap still exists to affect the
performance. By using the proposed method, features generated by
different deep learning models can be fused together into a unified
latent space with a better discriminative ability. In this way, the
proposed method leads to a better image ranking performance. In
Fig. 3, we also show some example results on semantic classes of
aeroplane, boat, horse and tvmonitor. In these example results, we
can also see some similar trends with Fig. 2.

4.4. Parameters setting

The tradeoff parameters of « and 8 have directly affects on the
image representation and retrieval performance. We conducted ex-
periments to test the sensitivity of the performance to these pa-
rameters. The left plot of Fig. 4 shows performance of versus o,
which varies within the set {1, 10, 100, 1000, 5000}. When the
value of o less than 10, the performance is worse. This is because
the parameter o decides the importance of graph Laplacian, and

in the situation of @ = 0 the model become a normal NMF model.
As the value of o increases, the performance grows and trends to
be much more stable until @ = 5000. The performance decreases
when o = 5000 may because the weight of graph Laplacian is too
large and the model overfits to the graph regularization. The right
plot of Fig. 4 shows performance of versus § that varies within
the set {1, 10, 100, 1000, 5000}. The effect of 8 is to increase the
diversity of graph regularization and prevent the graph Laplacian
from overfitting to a single graph. When 8 < 10, the performance
is worse. As the value of 8 is larger than 10 the performance be-
comes stable and makes a peak when 8 = 100.

In Fig. 5, we also show the impact of different anchor points’
amount on the image ranking performance. The baseline method
is the graph based non-negative embedding method that generates
the affinity matrix directly instead of using the anchor graph. In
this experiment, we can see that the performance is very sensitive
to the anchor points’ amount, when the number of anchor points
is less than 600. When the number of anchor points exceeds 600,
the growth of performance becomes slower and the performance
approximates to the baseline gradually. It suggests that 600 anchor
points are enough to simulate the manifold structure of data distri-
bution. As the number of anchor points increases to 1500, the pro-
posed method slightly outperforms the baseline. It might be due to
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the fact that the anchor graph, using a subset of data points to rep-
resent the whole dataset, which reduces the noise in the dataset.
In this way, the generated feature becomes more robust.

5. Conclusion

In this work, we presented a large scale content based image
ranking framework. In this model, multiple image features were
extracted by Alexnet and NIN model, respectively. Then the image
features were embedded into a unified latent space by an learned
multi-graph based non-negative multi-feature embedding model.
Meanwhile, multiple anchor graphs were utilized to reduce the
complexity of computational. Finally, a Markov random field was
constructed by the query and the testing data, and results were
ranked according to the relevance scores, which were inferred by
loopy belief propagation. We verified the effectiveness of the pro-
posed method by extensive experiments.
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