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ABSTRACT
We are living in the era of social networks, where people
throughout the world are connected and organized by
multiple social networks. The views revealed by different
social networks may vary according to the different services
they offer. They are complimentary to each other and
comprehensively characterize a specific user from different
perspectives. As compared to the scare knowledge conveyed
by a single source, appropriate aggregation of multiple
social networks offers us a better opportunity for deep
user understanding. The challenges, however, co-exist with
opportunities. The first challenge lies in the existence of
block-wise missing data, caused by the fact that some users
may be very active in certain social networks while inactive
in others. The second challenge is how to collaboratively
integrate multiple social networks. Towards this end, we
first proposed a novel model for data missing completion by
seamlessly exploring the knowledge from multiple sources.
We then developed a robust multiple social network learning
model, and applied it to the application of volunteerism
tendency prediction. Extensive experiments on real world
dataset verify the effectiveness of our scheme. The proposed
scheme is applicable to many other domains, such as
demographic inference and interest prediction.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

Keywords
Multiple Social Network Learning; Missing Data Completion;
Volunteerism Tendency Prediction

1. INTRODUCTION
With the explosion of social network services, more

and more people are involved in multiple social networks
for various purposes at the same time. It is reported
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that 52% of online adults concurrently use multiple social
media services1. Different aspects of users are disclosed on
different social networks due to their different emphasis.
In fact, these views are complementary to each other
and essentially characterize the same user from different
perspectives. As compared with single social network,
appropriate aggregation of multiple social networks provides
us a potential to comprehensively understand the given
users [1, 29]. For example, we can learn descriptive user
representation, build predictive models for user profiles, and
recommend prescriptive actions based on complete historical
behaviors. Hence, an effective technique for multiple social
network learning (MSNL) is highly desired. Distinguished
from multi-view learning which maximizes the agreement
between views using unlabeled data, MSNL works towards
supervised learning.

However, integration of multiple sources is non-trivial
[27]. The first tough challenge lies in how to fuse
users’ heterogeneous distributed data from multiple social
networks effectively. One naive approach is to concatenate
the feature spaces generated from different sources into a
unified feature space. Thereby, traditional machine learning
models can be further applied. However, this method simply
treats the confidence of all data sources equally and may also
lead to the curse of dimensionality. Moreover, it ignores two
important facts: 1) different aspects of users are revealed in
different social networks and are thus distributed in different
feature spaces; and 2) all these aspects tend to characterize
the same users. In particular, data from multi-sources
describes the same user and thus the results predicted by
different sources should be similar. Therefore, it is expected
to take the source confidence and source consistency into
consideration. Another challenge we are facing is the data
missing problem. Although some users have social accounts
on multiple social networks, generally they are active on
only a few of them. One simple approach to address this
challenge is to discard all incomplete subjects. It is apparent
that this method will dramatically reduce the training size,
thereby result in overfitting in the model learning stage.
Therefore, accurately completing missing data by jointly
utilizing multiple sources is a necessity to enhance the
learning performance.

To address these problems, we present a scheme for
MSNL, which co-regulates the source confidence and source
consistency. Figure 1 shows our proposed scheme comprising
of three components. Given a set of users, we first crawl

1According Paw Research Internet Project’s Social Media
Update 2014: http://www.pewinternet.org/
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Figure 1: Illustration of our proposed scheme. We first collect and align users’ distributed data from multiple
social networks. We then jointly infer the block-wise missing data based on the available data. We finally
apply MSNL on the complete data. SNi, xj, and yl refer to the i-th social network, j-th user sample, and the
l-th corresponding label, respectively.

their historical contents and all social connections. The first
component extracts the multi-faceted information cues to
describe a given user, including demographic information,
practical behaviors, historical posts, and profiles of social
connections. To deal with the block-wise missing data, the
second component attempts to infer the block-wise missing
data by learning a latent space shared by different social
networks, achieving a complete input to the next component.
We finally use the last component to conduct MSNL on
the complete data. Particularly, we model the confidence
of different data sources and the consistency among them
by unifying two regularization terms into our model.
Based upon our proposed scheme, we introduce one

application scenario: volunteerism tendency prediction.
Volunteerism was defined in [18] as long-term, planned,
prosocial behaviors that occur within organizational settings
and can benefit strangers. Persons exhibiting volunteerism
are the so-called volunteers, who serve as an important
work force in modern society. Traditionally, it is intractable
for nonprofit organizations (NPOs) to aimlessly recruit
volunteers from the huge crowd. It is thus necessary
to develop an automatic volunteerism tendency prediction
system to alleviate the dilemma that NPOs are facing.
In particular, we take the advantage of users’ casually
distributed online data, especially from multiple social
networks, which can comprehensively reveal users’ personal
concerns, interests [5, 22] and even personality traits [20,
21]. On the other hand, the real word dataset may contain
block-wise missing data due to some users’ inactivity in
social networks. Moreover, the specific task also brings us
another issue in terms of data collection and ground truth
construction. Therefore, the proposed scheme naturally fits
this application scenario.
Our main contributions can be summarized in threefold:
• We propose a novel MSNL model, which is able

to model both the source confidence and source
consistency. Specifically, we can obtain a closed-form
solution by taking the inverse of a linear system, which
has been mathematically proven to be invertible.

• We propose an approach to deal with missing data in
multiple social networks, which first learns a common

latent subpace shared by different sources [12] and the
original missing data can then be derived in turn.

• We empirically evaluate our proposed scheme on
the application of volunteerism tendency prediction.
In addition, we develop a set of volunteer-oriented
features to characterize users’ volunteerism tendency.
We have released our compiled dataset2 to facilitate
other researchers to repeat our experiments and verify
their proposed approaches.

The remainder of this paper is structured as follows,
Section 2 briefly reviews the related work. Section
3 describes the proposed MSNL model. Missing data
completion is introduced in Section 4. Section 5 presents
the set of volunteer-oriented features we developed. Section
6 details the experimental results and analysis, followed by
our concluding remarks in Section 7.

2. RELATED WORK
Although our work is distinguished from multi-view

learning, we can still benefit from their efforts. Zhang et al.
[28] proposed an inductive multi-view multi-task learning
model (regMVMT). regMVMT penalizes the disagreement
of models learned from different sources over the unlabeled
samples. Besides, the authors also studied the structured
missing data, which is completely missing for a source in
terms of a task. In other words, if a source is available for
a task, then all samples will have data from this source.
However, they overlooked the source weights and did not
pay attention to the partially structured missing data,
which are both what we are concerned with. Yuan et al.
[25] introduced an incomplete multi-source feature learning
method, avoiding the direct inference of block-wise missing
data. Particularly, the authors split the incomplete data
into disjoint groups, where they conducted feature learning
independently. However, such a mechanism constrains us
to conduct source level analysis. Later, Xiang et al. [24]
investigated multi-source learning with block-wise missing

2The compiled dataset is currently publicly accessible via:
http://multiplesocialnetworklearning.azurewebsites.net/
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data with an application of Alzheimer’s Disease prediction
and proposed the iSFS model. Apart from feature-level
analysis, the authors also conducted source-level analysis by
introducing the weights of models obtained from different
sources. However, ignoring the consistency relationships
among different models seems inappropriate. In addition,
the authors also adapted the model to handle cases where
block-wise missing data exists. Different from their work,
we infer the missing data by making full use of the available
data before applying MSNL, which is more generalizable to
other applications.

3. MULTIPLE SOCIAL NETWORK LEAR-
NING

This section details our proposed MSNL model and
derives an analytic solution by solving the inverse of a linear
system, whose invertibility is proved rigorously.

3.1 Notation
We first declare some notations. In particular, we use bold

capital letters (e.g. X) and bold lowercase letters (e.g. x) to
denote matrices and vectors, respectively. We employ non-
bold letters (e.g. x) to represent scalars, and Greek letters
(e.g. λ) as parameters. If not clarified, all vectors are in
column forms.
Suppose we have a set of N labeled data samples and

S ≥ 2 social networks. We compile the S social networks
with an index set C = {1, 2, · · · , S}. Let Ds and Ns

denote the number of features and samples in the s-th social
network, s ∈ C, respectively. Let Xs ∈ RN×Ds denote
the feature matrix extracted from the s-th social network.
Each row represents a user sample. Then the dimension
of features extracted from all these social networks is D =∑S

s=1 Ds. The whole feature matrix can be written as X =

{X1,X2, · · · ,XS} ∈ RN×D and y = {y1, y2, · · · , yN}T ∈
{1,−1}N×1 is the corresponding label vector.

3.2 Problem Formulations
Based on a set of data samples with S social networks,

we can learn S predictive models, where each model is
individually and independently trained on a social network.
The final predictive model can be strengthened via linear
combination of these S models. Mathematically, we learn
one linear mapping function fs for the s-th social network.
In addition, we assume that the mapping functions learned
from all social networks agree with one another as much
as possible. Particularly, we can formalize this assumption
using regularization function. Using the least square loss
function, we have the following objective function,

min
fs

1

2N

∥∥y − f(X)
∥∥2

+
µ

2N

S∑
s=1

∑
s′ ̸=s

∥∥fs(Xs)− fs′(Xs′)
∥∥2

+
λ

2

∥∥f∥∥2
, (1)

where f(X) is the final predictive model. fs(Xs) is the
prediction results generated from data Xs. λ and µ are
the nonnegative regularization parameters that regulate the
sparsity of the solution regarding fs and the disagreement
among models learned from different social networks,
respectively. If we just treat the confidence of different
social networks equally, the final predictive model can be

formalized as follows,

f(X) =
1

S

S∑
s=1

fs(Xs). (2)

However, in reality, different social networks always have
different confidence to the final prediction, and we consider
modeling the weights of multiple sources instead of treating
all sources equally by introducing the weight vector: α =
[α1, α2, · · · , αS ]

T ∈ RS×1, where αs controls the weight of
model learned from s-th social network. Then the final
model is defined as follows,

f(X) =
S∑

s=1

αsfs(Xs)

subject to eTα = 1, (3)

where e = [1, 1, · · · , 1]T ∈ RS×1. It is worth mentioning
that we do not impose the constraint of αs ≥ 0, as we
want to keep both positive and negative weights. Positive
weights indicate the positive correlations of social networks
with the final results, while negative weights reflect negative
correlations between the given task and different sources,
which may contain unreliable and noisy data.

For the s-th social network, we learn a linear mapping
function indexed by a model ws ∈ RDs×1. Then the
objective function can be rewritten as follows,

min
ws,α

1

2N

∥∥∥∥y −
S∑

s=1

αsXsws

∥∥∥∥2

+
µ

4N

S∑
s=1

∑
s′ ̸=s

∥∥Xsws −Xs′ws′
∥∥2

+
λ

2

S∑
s=1

∥∥ws

∥∥2
+

β

2

∥∥α∥∥2
, (4)

where eTα = 1 and β is the regularization parameter,
controlling the sparsity of the solution regarding α.

3.3 Optimization
We adopt the alternating optimization strategy to solve

the two variables α and ws in Eqn. (4). In particular,
we optimize one variable while fixing the other one in
each iteration. We keep this iterative procedure until the
objective function converges.

3.3.1 Computing α with ws fixed
We denote the objective function as Γ. For simplicity, we

replace y in Eqn. (4) by yeTα, as eTα = 1. With the help
of Lagrangian, Γ can be rewritten as follows,

min
α

1

2N

∥∥yeTα−XWα
∥∥2

+
β

2

∥∥α∥∥2
+ δ(1− eTα), (5)

where δ is the nonnegative Lagrange multiplier and W =
diag(w1,w2, · · · ,wS) ∈ RD×S . Taking derivative of Γ with
respect to α, we have,

∂Γ

∂α
=

1

N
(yeT −XW)T (yeT −XW)α+ βα− δe. (6)

Setting Eqn. (6) to zero, it can be derived that,

α = δM−1e, (7)

where

M =
1

N
(yeT −XW)T (yeT −XW) + βI. (8)
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Since eTα = 1, we can obtain that,

δ =
1

eTM−1e
, α =

M−1e

eTM−1e
. (9)

Obviously, M ∈ RS×S is positive definite and invertible,
according to the definition. We thus can obtain the analytic
solution of α as Eqn. (9). Moreover, we note that when
the prediction results learned from all social networks are
equal, where X1w1 = X2w2 = · · · = XSwS , then same
weights will be assigned, i.e., α1 = α2 = · · · = αS . In
addition, Eqn. (9) tends to assign higher weight αs, if smaller
difference exists between y and Xsws.

3.3.2 Computing ws with α fixed
When α is fixed, we compute the derivative of Γ regarding

ws as follows,

∂Γ

∂ws
=

1

N
αsX

T
s (

S∑
s=1

αsXsws − y)

+
µ

N
XT

s

∑
s′ ̸=s

(Xsws −Xs′ws′) + λws

=
[
λI+

α2
s

N
XT

s Xs +
µ(S − 1)

N
XT

s Xs

]
ws

+
∑
s′ ̸=s

1

N
(αsαs′ − µ)XT

s Xs′ws′ −
αs

N
XT

s y, (10)

where I is a Ds × Ds identity matrix. Setting Eqn. (10)
to zero and rearranging the terms, all ws’s can be learned
jointly by the following linear system,

Lw = t
L11 L12 L13 · · · L1S

L21 L22 L23 · · · L2S

L31 L32 L33 · · · L3S

...
...

...
. . .

...
LS1 LS2 LS3 · · · LSS




w1

w2

w3

...
wS

 =


t1
t2
t3
...
tS

 , (11)

where L ∈ RD×D is a sparse block matrix with S × S
blocks, w = [wT

1 ,w
T
2 , · · · ,wT

S ]
T ∈ RD×1 and t =

[tT1 , t
T
2 , · · · , tTS ]T ∈ RD×1 are both sparse block vectors with

S × 1 blocks. ts, Lss and Lss′ are defined as follows,
ts = αs

N
XT

s y,

Lss = λI+
α2
s−µ

N
XT

s Xs +
µS
N

XT
s Xs,

Lss′ =
αsαs′−µ

N
XT

s Xs′ .

(12)

Technically, t can be treated as a constant matrix as α is
fixed. It is worth noting that L is symmetric as Lss′ = LT

s′s.
If we can prove that L is invertible, then we can derive the
closed-form solution of w as follows,

w = L−1t. (13)

We now show L is invertible by proving that L is a positive-
definite matrix. Let h = [hT

1 ,h
T
2 , · · · ,hT

S ]
T ∈ RD×1 ̸= 0 be

an arbitrary block vector, where hi ∈ RDi×1, i ∈ C. Then

Algorithm 1 Alternative optimization for solving Eqn. (4)

Input: X, y, λ, β, µ
Output: α, w
1: Initialize (w)0 by fitting each source individually on the

available data. Initialize (α)0 = [ 1
S
, 1
S
, · · · , 1

S
].

2: for k = 1, 2, · · · do
3: Compute each (α)k according to Eqn. (9).
4: Update (w)k according to Eqn. (13).
5: if the objective value stops decreasing then
6: return α = (α)k and w = (w)k

7: end if
8: end for

we need to prove that hTLh

=
S∑

i=1

S∑
j=1

hT
i Lijhj

= λ
∥∥h∥∥2

+
1

N

[ S∑
i=1

∥∥αiXihi

∥∥2
+ µ(S − 1)

S∑
i=1

∥∥Xihi

∥∥2

+

S∑
i=1

∑
j ̸=i

αih
T
i X

T
i αjXjhj − µ

S∑
i=1

∑
j ̸=i

hT
i X

T
i Xjhj

]
, (14)

is always larger than zero. In fact, given an arbitrary vector
bi, we have,

S∑
i=1

∑
j ̸=i

∥∥bi − bj

∥∥2 ≥ 0

(S − 1)

S∑
i=1

∥∥bi

∥∥2 ≥
S∑

i=1

∑
j ̸=i

bT
i bj . (15)

Therefore, we have the following inequality,

µ(S − 1)
S∑

i=1

∥∥Xihi

∥∥2 ≥ µ
S∑

i=1

∑
j ̸=i

(Xihi)
TXjhj . (16)

Besides, we know that,

S∑
i=1

∥∥αiXihi

∥∥2
+

S∑
i=1

∑
j ̸=i

αih
T
i X

T
i αjXjhj =

∥∥∥∥ S∑
i=1

αiXihi

∥∥∥∥2

≥ 0.

(17)

Based upon Eqn. (16) and Eqn. (17), we have that,

hTLh ≥ λ
∥∥h∥∥2

. (18)

As h ̸= 0, hTLh is always larger than zero. Consequently,
L is invertible. The overall procedures for alternating
optimization are summarized in Algorithm 1. As each
iteration can decrease Γ, whose lower bound is zero, we can
guarantee the convergence of Algorithm 1 [7, 16].

4. MISSING DATA COMPLETION
In this section, we deal with a more challenging and

realistic situation, where block-wise missing data exists,
and propose an approach for multiple social network data
completion (MSNDC). In such situations, user samples may
not be active in all social networks, which leads to the block-
wise data missing.
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Suppose we have S data sources in total and each sample
has at least one data source available. We employ the subset
Ci ⊆ C to indicate the presence of each source and the
signature of a specific social network combination. Based
on these combinations, all the data samples can be split
into multiple exclusive sets, where each set corresponds to
a combination. Figure 2 illustrates the incomplete data
in our dataset. As can be seen, all users have complete
features from SN1, while some users miss data in SN2 or
SN3. Therefore, our dataset can be split by four exclusive
social network combinations: C1 = {1, 2}, C2 = {1, 2, 3},
C3 = {1, 3}, C4 = {1}.
Inspired by [10], we use Non-negative Matrix Factorization

(NMF) to explore the latent spaces that are shared by
different social networks, and further infer the missing data
based upon these latent spaces. It is reasonable to assume
that the data from different social networks about the same
user shares certain latent features. We employ XCi

s ∈
RNCi

×Ds to denote the samples generated from the s-th
social network. It only contains samples that are available
in the set of social networks Ci, where NCi stands for the
number of these samples. We use Us ∈ Rz×Ds to represent
the latent basis matrix for the s-th social network, andPCi

s ∈
RNCi

×z to denote the corresponding latent representation of
feature matrix XCi

s . z is the dimension of the shared latent
space of different social networks. The intuitive assumption
is that for the samples available in both the s-th and s′-th
social networks, their corresponding latent representations
should also be quite similar. In particular, we impose this
constraint to NMF as follows,

PCi
s = PCi

s′ = PCi , (19)

where s ̸= s′, s ∈ Ci, and s′ ∈ Ci. We thus learn the shared
subspaces by the following objective function,

min
Us≥0
Ps≥0

∥∥∥∥∥∥∥∥∥


X

{1}
1

X
{1,2}
1

X
{1,3}
1

X
{1,2,3}
1

−


P{1}

P{1,2}

P{1,3}

P{1,2,3}

U1

∥∥∥∥∥∥∥∥∥
2

+ν
∥∥P1

∥∥
1
+ η

∥∥U1

∥∥
1

+

∥∥∥∥∥
[
X

{1,2}
2

X
{1,2,3}
2

]
−

[
P{1,2}

P{1,2,3}

]
U2

∥∥∥∥∥
2

+ν
∥∥P2

∥∥
1
+ η

∥∥U2

∥∥
1

+

∥∥∥∥∥
[
X

{1,3}
3

X
{1,2,3}
3

]
−

[
P{1,3}

P{1,2,3}

]
U3

∥∥∥∥∥
2

+ν
∥∥P3

∥∥
1
+ η

∥∥U3

∥∥
1
,

(20)

where ν and η are the nonnegative tradeoff parameters for
the regularizations. Similarly, we employ the alternating
optimization strategy to solve the optimization in Eqn. (20).
To be more specific, we first initialize Us and compute
the optimal Ps. Afterwards, Ps is updated based on the
computed Us. We keep this iterative procedure until the
objective function converges.
The proposed approach differs from [10] in the following

three aspects. First, MSNDC is generalized to handle the
more challenging scenario where data samples are extracted
from more than two social networks. Second, apart
from regulating the latent representation matrix, we also
incorporate the regularization on the latent basis matrix.
Third, we further derive the original missing data from
the latent representation, where the authors in [10] just
apply cluster algorithms directly to the latent representation

Figure 2: Illustration of the incomplete data from
three sources. XCi

s denotes the samples generated
from social network s that are only available in the
social network combination of Ci.

of data instead of the original data. This is due to two
considerations. One is that we believe the value of original
known data is higher than the latent representation. The
other one is that we need to preserve the heterogeneity
among data from different sources to fit the MSNL model.

4.1 Optimization
In order to increase the efficiency of the iterative procedure,

we initialize Us by optimizing the following objective
function,

min
Us≥0

∥∥∥X{1,2,3}
1 −P{1,2,3}U1

∥∥∥2

+ν
∥∥P{1,2,3}

∥∥
1
+ η

∥∥U1

∥∥
1

+
∥∥∥X{1,2,3}

2 −P{1,2,3}U2

∥∥∥2

+η
∥∥U2

∥∥
1

+
∥∥∥X{1,2,3}

3 −P{1,2,3}U3

∥∥∥2

+η
∥∥U3

∥∥
1
. (21)

We then alternatively optimize Us and Ps until the
objective function converges. Specifically, we employ the
greedy coordinate descent (GCD) approach [9], which
has been proven to be tremendously fast to solve NMF
decomposition with L1-norm regularization. Finally, we
obtain Ps,Us, s ∈ C, based on which we can infer the
missing data as follows,

X̂Ci
s = PCiUs, ∀s /∈ Ci. (22)

Algorithm 2 summarizes the overall procedures for alternating
optimization.

5. APPLICATION: VOLUNTEERISM TEN-
DENCY PREDICTION

In this work, we apply the proposed scheme to an
application scenario: volunteerism tendency prediction. In
modern society, volunteers are extremely crucial to NPOs
to sustain their continuing operations. The discovery
of users’ volunteerism tendency can significantly facilitate
the recruitment of volunteers for NPOs, which can save
considerable cost to find the potential volunteers. In
particular, we cast the problem of volunteerism tendency
prediction as a user binary classification. If the predicted
tendency score of a given user is larger than a pre-defined
threshold γ, we regard this user as a volunteer. In this work,
we explore three popular social networks: Twitter, Facebook
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Algorithm 2 Alternative optimization for solving Eqn. (20)

Input: X1,X2,X3, ν, η
Output: X̂

1: Initialize U
(0)
s according to Eqn. (21).

2: for k = 1, 2, · · · do
3: for s = 1, 2, · · · , S do

4: Compute each P
(k)
s according to Eqn. (20) via GCD

approach.

5: Update U
(k)
s according to Eqn. (20) via GCD

approach.
6: if the objective value stops decreasing then

7: return Us = U
(k)
s and Ps = P

(k)
s

8: end if
9: end for
10: end for
11: for j = 1, 2, · · · , S do
12: for Cq ⊆ C do
13: if j ∈ Cq then

14: X̂
Cq

j = X
Cq

j .
15: else
16: Infer X̂

Cq

j according to Eqn. (22).
17: end if
18: end for
19: end for

and LinkedIn, as they are representative of a public, private,
and professional social network, respectively. Besides, it
is known that users exhibit different aspects on different
social networks [1], and the combination of these three social
networks would help to better characterize user behaviors on
social platforms.

5.1 Multiple Social Accounts Mappings
To represent the same users with multiple sources, we need

to first tackle the problem of “Social Account Mapping”,
which aims to align the same users across different social
networks by linking their multiple social accounts [1]. To
accurately establish this mapping, we employ the emerging
social services such as About.me3 and Quora4, where
they encourage users to explicitly list their multiple social
accounts on one profile.
We proposed two strategies to collect data from About.me.

• Keyword search: We searched About.me with the
keyword “volunteer” and obtained 4, 151 volunteer
candidates.

• Random select: We employed Random API5,
provided by About.me, to collect non-volunteers. This
API returns a specified number of random user profiles.
Finally, we harvested 1, 867 non-volunteer candidates.
It is worth mentioning that volunteers may be present
in these random users.

To enlarge our dataset, we also collected candidates from
Quora by the breadth-first-search method. Particularly, we
took advantage of both the follower and followee6 relations
provided by Quora. Initially, we selected two popular users

3https://about.me/
4http://quora.com/
5http://about.me/developer/api/docs/
6If A follows B, then A is B’s follower and B is A’s followee.

as the seed users and then explored all their neighboring
connected users. We applied similar exploration approach
to all other non-seed users. In the end, we collected 172, 235
users’ profiles and only retained those who have accounts in
Facebook, Twitter and LinkedIn.

5.2 Ground Truth Construction
Based on these candidates, we launched a crawler to

collect their historical social contents, including their basic
profiles, social posts and relations. However, the traditional
web-based crawler is not applicable to Facebook due to
its dynamic loading mechanism. We thus resorted to the
Selenium7 to simulate users’ click and scroll operations
on a FireFox browser and load users’ publicly available
information. We limited the access rate to one request per
second to avoid being blocked by the robot checkers. It is
worth mentioning that the data we collected is all publicly
available. On the other hand, due to the privacy constraint,
we could not access uses’ social relations in Facebook and
LinkedIn. We hence only collected users’ followee relations
in Twitter.

In order to improve the quality of our dataset, we
employed three annotators to finalize our ground truth.
As users tend to provide more complete and reliable
profiles in LinkedIn, we guided the annotators to study
the LinkedIn profiles of candidate users, and determine
whether they are “volunteers” by majority votes. To ensure
a uniformly labeling procedure, we provided them a piece
of guideline. Given a user’s LinkedIn profile, we classified
the user as a volunteer if and only if this user lists his/her
volunteer experiences in the section “Volunteer experience
& Causes” or section “Experience”. Candidates who do
not satisfy the above two criteria were tagged as non-
volunteers. We focused on LinkedIn to determine whether
users are volunteers because the volunteer experiences in
LinkedIn are the most straightforward evidence to identify
volunteers. It should be noted that those who do not
mention their volunteer experiences in LinkedIn are not
necessarily classified as “non-volunteers”. However, the
absence of these mentions, at least, reveals their limited
interests and low enthusiasm in volunteerism. Therefore,
in our work, we broadly defined users as “non-volunteers” if
they do not mention their relevant volunteerism experiences
in LinkedIn.

Table 1 lists the statistics of our dataset. We obtained
the data for 1, 425 volunteers and 4, 011 non-volunteers
according to the aforementioned strategies. The crawling
was conducted between 22nd August to 11th September,
2013. Here we only selected a subset of non-volunteer data
and made the dataset balanced to avoid the training bias. To
facilitate this line of research, this dataset has been released
after certain privacy preservation processing.

However, in reality, not all users are active enough on all
social networks. To ensure the data quality, we treated those
inactive users as missing with respect to a specific social
network. Therefore, there exists block-wise missing data in
our dataset. In particular, we treated a user as missing in
Twitter or Facebook, if this user has less than 10 historical
social posts. In addition, due to the absence of social post
mechanism in LinkedIn, we treated a user as missing8 in

7http://docs.seleniumhq.org/download/
8Here we exclude the contents of section “Volunteer
experience & Causes” and section “Experience”.

6



Table 1: Statistics of our dataset.

Data Volunteer
Non-

volunteer

Twitter profiles ∼1.5k ∼4k
Twitter posts ∼559k ∼1m
Twitter followees’ profiles ∼902k ∼3m
Facebook profiles ∼1.5k ∼4k
Facebook posts ∼83k ∼338k
LinkedIn profiles ∼1.5k ∼4k

LinkedIn if the word count of this user’s profile is less than
50. Figure 3 shows the statistics of our incomplete data. As
can be seen, about 50% of users have complete data from all
three social networks. 1% and 47% of users only miss the
data either from Facebook and LinkedIn, while 2% of users
miss the data from both of them.

Figure 3: Statistics of the incomplete data. Tw:
Users with Twitter data only; Tw+Fb: Users with
Twitter and Facebook data only; Tw+In: Users
with Twitter and Linkedin data only; Tw+Fb+In:
Users without missing data.

5.3 Features
To capture users’ volunteerism tendency, we extracted a

rich set of volunteer-oriented features.

5.3.1 Demographic Characteristics
The study in [19] reported that some demographic

characteristics, such as education and income level, are
strong indicators for volunteerism. This study inspires us
to extract demographic characteristics from users’ profiles,
especially the Facebook and LinkedIn profiles. In our work,
we explored users’ demographic characteristics, including
Gender, Relationship status, Education level, and Number
of social connections.

5.3.2 Linguistic Features
We also extracted linguistic features, including Linguistic

Inquiry and Word Count (LIWC) features, user topics and
contextual topics.

LIWC features. LIWC is widely-used to analyze the
psycho-linguistic transparent lexicon. It plays an important
role in predicting users’ personality [2, 15]. The main
component of LIWC is a directory which contains the
mapping from words to 72 categories9. Given a document,

9http://www.liwc.net/

LIWC computes the percentage of words in each category
and represents it as a vector of 72 dimensions.

To capture the key aspects of LIWC features, we selected
the top 5 dimensions as the representative LIWC features
according to the information gain ratio. Considering
that the emotions for individuals may also affect users’
volunteerism tendency, we additionally selected two categories
from LIWC: positive emotion and negative emotion. Besides,
we also utilized the positive-negative emotion ratio to
further reflect users’ emotional states. Let L(•) represent
the percentage of users’ words in certain LIWC category.
The positive-negative emotion ratio is defined as,

PNemo = L(pos)log
L(pos) + ξp
L(neg) + ξn

, (23)

where ξp and ξn are introduced to avoid the situation:
individuals have no positive or negative emotional word.
They are both set as 0.0001. In total, we have 16 dimension
LIWC features, extracted from Twitter and Facebook.
User topics. According to our observation, volunteers may
have, on average, a higher probability of talking about topics
such as social caring or giving back, while the non-volunteers
may mention other topics more often. This motivates
us to explore the topic distributions of users’ social posts
to identify volunteers. We generated topic distributions
using Latent Dirichlet Allocation (LDA) [4], which has been
widely found to be useful in latent topic modeling [8, 23].
Based on perplexity [14] metric frequently utilized to find the
optimal number of hidden topics, we ultimately obtained 52,
26, 42 dimensional topic-level features over users’ Twitter,
Facebook and LinkedIn data, respectively.
Contextual topics. We define users’ contextual topics
as the topics of users’ connections. We believe that
the contextual topics intuitively reflect the contexts of
users. “He that lies down with dogs must rise up
with fleas” tells us that the context significantly affects
a user’s tendency. Particularly, we studied followees
and retweeting10 connections on Twitter because of their
intuitive reflection of topics that users concern. As the
bio descriptions are usually provided by users to briefly
introduce themselves and may indicate users’ summarized
interests, we integrated the bios of a user’s followees or those
whose tweets are retweeted by this user into two kinds of
bio documents, on which we further applied LDA model.
We utilized the perplexity to fix the dimensions of topic-
level features over followees’ bio documents and retweetings’
bio documents as 40 and 20, respectively. In this work, we
only explored the contextual topics in Twitter, since we were
unable to crawl the connections’ profiles in LinkedIn and the
bio descriptions are usually missing in Facebook.

5.3.3 Behavior-based features
This kind of features is characterized by users’ posting

behavior patterns and networking behavior patterns. The
former focuses on the written style of users’ social posts,
while the latter captures their egocentric network features.

Posting behavior patterns. Posting behavior patterns
have been investigated in many scenarios, spanning from
age estimation to social spammers discovery [3, 13]. These
patterns can be used to depict users’ participation in

10If A broadcasts a tweet posted by B, then B is A’s a
retweeting user.
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information diffusion, which correlates with volunteerism
tendency much.
On one hand, we employed the fraction of users’ posts

containing certain behaviors, including emoticons, slang
words, acronyms, hashtags, URLs, and user mentions, to
intuitively reflect users’ engagement in topic discussion and
social interaction. On the other hand, we observed that
users’ posting behaviors in social networks can be classified
into a few categories. For example, posts in Twitter can
be classified into two categories, Ctw = {tweets, retweets},
while posts in Facebook can roughly be split into eight types:
Cfb = {share link, share sideo, share status, share photo,
change photo, repost, post, tagged}. The distributions over
users’ posts on these categories also reflect their participation
in information diffusion, revealing whether a given user
tend to share information in social networks. When it
comes to Linkedin, we utilized the profile completeness to
characterize users’ behaviors. Based on our observation,
we found that volunteers tend to provide more information
for all the sections. This not only reflects volunteers’
active participation in LinkedIn but also signals their self-
confidence and openness to public. Profile completeness is
defined as a boolean vector over six dimensions to denote
the presence of the six common sections in LinkedIn profiles:
summary, interest, language, education, skill and
honor. We excluded the sections on experience and
volunteer experience & causes, because the ground
truth is built on these two sections.
Egocentric network patterns. We also studied users’
social behaviors from their egocentric networks. Intuitively,
we believe that users belong to certain class tend to be
connected with several class-specific accounts, as it goes for
that“birds of a feather flock together”. Therefore, volunteers
should interact with some typical accounts in social media.
The set of typical accounts is denoted as FV . Inspired by
[17], we measured the degree of a user’s correlation with
volunteerism by three features: the frequency and fraction
of a user’s “friends” that belong to FV as well as the total
number of “friends”. In particular, we treated both the
followees and retweetings as the“friends”of users in Twitter.
To construct the FV , we utilized the Twitter profile

repository Wefollow11, which allows us to find the most
prominent people given a particular category. By crawling
prominent users falling into categories of Nonprofit, Charity,
Volunteer, NGO, Community Service, Social Welfare and
Christian from Wefollow, we obtained 23, 285 accounts.

6. EXPERIMENTS
We conducted extensive experiments to comparatively

verify our proposed scheme from various angles over a
system equipped with Intel i72.60 GHz CPU, and 8 GB
memory. In particular, we launched 10-fold cross validation
for each experiment, and reported the average performance.
Each fold involves 2, 249 training and 250 testing samples.

6.1 On Model Comparison
We compared MSNL with four baselines. Before that,

the data was completed by MSNDC. We also performed
significant test to validate the effectiveness of MSNL.

11http://wefollow.com/

SVM: We chose the learning formulation with the kernel
of radial-basis function. We implemented this method based
on LIBSVM [6].

RLS: Regularized least squares model [11] aims to

minimize the objective function of 1
2N

∥∥y −Xw
∥∥2

+ λ
2

∥∥w∥∥2
.

In fact, the RLS model can be deduced from MSNL via
the settings of α = [ 1

S
, 1
S
, · · · , 1

S
]T , µ = 0 and β = 0.

iSFS: The third baseline is the incomplete source-feature
selection model proposed in [24]. This model only assigns
weights to models learned from different social networks but
ignores the relationships among them. We can derive iSFS
from MSNL by making µ = 0.

regMVMT: The fourth baseline is the regularized multi-
view multi-task learning model [28]. This model only
regulates the relationships among different views but fails
to take the source confidence into account. We can derive
regMVMT from MSNL by making α = [ 1

S
, 1
S
, · · · , 1

S
]T .

Table 2: Performance of different models(%).
Approaches F1-measure P-value

SVM 83.11 0.038
RLS 82.82 0.025
regMVMT 84.07 0.173
iSFS 84.72 0.281
MSNL 85.59 -

Table 2 shows the performance comparison between
baselines and our proposed MSNL. We noticed that
MSNL significantly outperforms the SVM and RLS. This
implies that the information on multiple social networks
are complementary and characterize users’ volunteerism
tendency consistently. This also proves that the correlations
of different social networks with the task of volunteerism
tendency prediction cannot be treated equally. In addition,
MSNL achieves better performance, as compared with
iSFS and regMVMT, which are the derivations of MSNL.
This demonstrates that both the source confidence and the
source consistency deserve particular attention.

6.2 On Data Completion Comparison
We further evaluated the component for missing data

completion with the following three baseline methods.
Remove: This method eliminates all data samples that

are not complete.
Average: This method imputes the missing features with

the average values of the corresponding feature items.
KNN: The missing data is inferred by averaging its K-

nearest neighbors. K is experimentally set as 1.

Table 3: Performance of different models over
different data completion strategies.

Approaches SVM RLS MSNL

Remove 74.91 74.66 81.81
Average 82.09 81.99 85.43
KNN 82.60 82.22 85.55

MSNDC 83.11 82.82 85.59

Table 3 shows the performance of different models over
different data completion strategies. It can be seen that
MSNDC outperforms the other strategies. Additionally,
removing all incomplete data samples achieves the worst
performance, which may be caused by the fact that it
introduces training bias, making the dataset unbalanced and
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reduces the size of training dataset. We found that the
percentage of volunteer samples decreases from 50% to 40%
after filtering out all incomplete data samples.

6.3 On Feature Comparison
To examine the discriminative features we extracted, we

conducted experiments over different kinds of features using
MSNL. We also performed significant test to validate the
advantage of combining multiple social networks. Table 4
comparatively shows the performance of MSNL in terms
of different feature configurations. It can be seen that
the linguistic features achieves the best performance, as
compared against demographic characteristics and behavior-
based features. This reveals that volunteerism tendency
is better reflected by their social contents, including their
own social posts and the self-descriptions of their social
connections. This also implies that users with volunteerism

Table 4: Performance of different features(%).
Features F1-measure

Demographic characteristics 68.43
Linguistic features 80.06

User topics 75.04
Contextual topics 78.14
LIWC 68.48

Behavior-based features 78.52
Posting behavior patterns 69.83
Egocentric network patterns 75.91

tendency may talk about related topics and follow or
retweet related social accounts. In addition, we found
that contextual topics are more discriminative as compared
to users’ own topics. This may be due to the fact that
users’ self-descriptions are of more value and contain less
noise than users’ tweets. Some hot topics discussed by
volunteers are given in Table 5. Besides, the egocentric
network patterns also play a dominant role in our task. This
implies that one’s social connections indeed reflect the user’s
personal concerns to a large extent.

6.4 On Source Comparison
To demonstrate the descriptiveness of multiple social

network integration, we conducted experiments over various
source combinations. Notably, data from Facebook and
LinkedIn is incomplete and we need to infer the block-wise
missing data first taking advantage of the complete data
samples from Twitter.
Table 6 shows the performance of MSNL over different

social network combinations. We noted that the more
sources we incorporate, the better the performance can be
achieved. This implies the complementary relationships
rather than mutual conflicting relationships among the
sources. Moreover, we found that aggregating data from
all these three social networks can achieve significantly
better performance as compared to each of the single
source. Additionally, as the performance obtained from
different single social networks are not the same, this
validates that incorporating the confidence of different
social networks to MSNL is reasonable. Interestingly, we
observed that MSNL over Twitter alone achieves the much
better performance, as compared to that over LinkedIn or
Facebook alone. This may be caused by the fact that the

Table 5: Hot topics discussed by volunteers.
Followee and retweeting: contextual topics; Self:
user topics.
Data source Topic words

Followee
• public, politics, rights, development
• editor, global, journalist, university

Retweeting
• global, nonprofit, change, community
• health, education, learning, university

Self
• woman, help, education, child
• volunteer, nonprofit, support

most discriminative features evaluated by Section 6.3 are all
extracted from Twitter.

Table 6: Performance of different social network
combinations(%). Facebook∗ and LinkedIn∗ both
refer to the complete data, whose missing data is
pre-inferred. F1: F1-measure.
Social network combinations F1 p-value

Twitter 82.35 4.2e-2
Facebook∗ 73.53 5.0e-7
LinkedIn∗ 74.49 3.1e-7
Twitter+Facebook∗ 83.67 1.1e-1
Twitter+LinkedIn∗ 83.84 1.4e-1
Facebook∗+LinkedIn∗ 76.29 6.0e-6
Twitter+Facebook∗+LinkedIn∗ 85.59 -

6.5 Size Varying of Positive Samples
In order to verify the usefulness of our model on real

world dataset, where the volunteers should account for a
minority portion of user population, we tuned the fraction of
volunteer samples in our dataset. In particular, we fed x%,
x ∈ [5, 50], of volunteer samples to our model with stepsize
5%. Figure 4 shows the F1-measure with respect to different
fraction of volunteer samples of different models. As can be
seen, our model can achieve satisfactory performance even
when volunteer samples only accounts for 5% of the whole
samples. This demonstrates that the proposed MSNL
model is not sensitive to the percentage of positive samples.
Whereas, SVM and RLS are relatively more sensitive to
the fraction of volunteer samples in dataset.

Figure 4: F1-measure at different fraction of
volunteer samples.

6.6 Complexity Discussion
In order to analyze the complexity of MSNL, we need

to solve the time complexity in terms of constructing
M, L and t as defined in Eqn. (8) and Eqn. (12), and
computing the inverse of M and L. Assume D ≫ S,
the construction of matrix M has a time complexity of
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O(NDS), and the construction of matrix L has a time
complexity of O(ND2). Due to the fact that the cost of
matrix multiplications (XT

s Xs
′ ) and that of constructing

t involved in Eqn. (12) remain the same for all iterations
and L is symmetric, we can save much practical time cost.
Also, using the standard method, computing the inverse of
two core matrices, M and L, has the complexity of O(S3)
and O(D3), respectively. Furthermore, using the method of
Coppersmith and Winogard, the time cost can be bounded
by O(S2.376) and O(D2.376) [26], respectively. We note that
the speed bottleneck lies in the number of features and the
number of social networks instead of the number of data
samples. As S andD are usually small, especially S, MSNL
should be efficient in time complexity.
To validate the practical efficiency of the proposedMSNL

model, we conducted a set of experiments. The comparison
of average time consumption of different models is shown in
Table 7. As can be seen, MSNL shows superiority over
SVM in terms of the time cost, which takes only 19%
of the time that SVM uses. By careful observation, we
observed that MSNL converges very fast, which on average
takes about 20 iterations. Even though MSNL takes more
time than RLS and regMVMT due to the consideration
of source consistency and source confidence, it improves the
performance in terms of F1-measure.

Table 7: Time cost of different models (%).
Approach Total (s) Train (s) Test (s)

SVM 2.0550 1.8211 0.2339
RLS 0.0639 0.0631 0.0008
regMVMT 0.0605 0.0595 0.0006
iSFS 0.5565 0.5557 0.0008
MSNL 0.3936 0.3929 0.0007

7. CONCLUSIONS AND FUTURE WORK
This paper presented a novel scheme for multiple social

network learning. This scheme takes the source confidence
and source consistency into consideration by introducing
regularization to the objective function. We further
demonstrated that the proposed scheme, designed for
complete data, is also able to handle the real and more
challenging cases where there exists block-wise missing
data. In particular, before feeding the data into the
proposed MSNL model, we inferred the missing data via
NMF technique. Furthermore, we practically evaluated the
proposed scheme in an interesting scenario of volunteerism
tendency prediction. We developed a set of volunteer-
oriented features to characterize users’ volunteerism tendency.
Experimental results demonstrated the effectiveness of our
proposed scheme and verified the advantages of utilizing
multiple social network over a single source. Currently, we
only consider solving a single task in the proposed scheme.
In the future, we will extend our work to the context of
multiple task learning.
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