User Attention-guided Multimodal Dialog Systems

Chen Cui Wenjie Wang Xuemeng Song
Shandong University Shandong University Shandong University
chentsuei@gmail.com wenjiewang96@gmail.com sxmustc@gmail.com
Minlie Huang Xin-Shun Xu Ligiang Nie
Tsinghua University Shandong University Shandong University

aihuang@tsinghua.edu.cn

ABSTRACT

As an intelligent way to interact with computers, the dialog
system has been catching more and more attention. However,
most research efforts only focus on text-based dialog systems,
completely ignoring the rich semantics conveyed by the visual
cues. Indeed, the desire for multimodal task-oriented dialog
systems is growing with the rapid expansion of many domains,
such as the online retailing and travel. Besides, few work
considers the hierarchical product taxonomy and the users’
attention to products explicitly. The fact is that users tend to
express their attention to the semantic attributes of products
such as color and style as the dialog goes on. Towards this
end, in this work, we present a hierarchical User attention-
guided Multimodal Dialog system, named UMD for short. UMD
leverages a bidirectional Recurrent Neural Network to model the
ongoing dialog between users and chatbots at a high level; As to
the low level, the multimodal encoder and decoder are capable
of encoding multimodal utterances and generating multimodal
responses, respectively. The multimodal encoder learns the visual
presentation of images with the help of a taxonomy-attribute
combined tree, and then the visual features interact with textual
features through an attention mechanism; whereas the multimodal
decoder selects the required visual images and generates textual
responses according to the dialog history. To evaluate our
proposed model, we conduct extensive experiments on a public
multimodal dialog dataset in the retailing domain. Experimental
results demonstrate that our model outperforms the existing state-
of-the-art methods by integrating the multimodal utterances and
encoding the visual features based on the users’ attribute-level
attention.
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1 INTRODUCTION

In the past few years, dialog systems have penetrated into many
aspects of our lives, and have been gaining increasing research
interests [4]. Roughly speaking, dialog systems fall into two
categories: open-domain dialog systems [5, 15, 29, 34, 36, 41] and
task-oriented dialog systems [22, 25, 32, 35, 40, 43]. The former is
able to chat with users on a wide range of topics without domain
restrictions; whereas the latter helps users to accomplish specific
tasks in certain vertical domains, such as the catering and travel.
Notably, both research and industrial communities have reached
the consensus that a robust and efficient task-oriented dialog
system is capable of improving the user experience and thereby
boost sales [4, 32]. In the light of this, we focus on improving task-
oriented dialog systems in this work, especially the multimodal
dialog system in the online retailing domain.

The traditional task-oriented dialog systems usually follow
a typical pipeline [13, 22, 40], comprising four components: 1)
natural language understanding (NLU); 2) dialog state tracker
(DST); 3) policy network; and 4) natural language generation
(NLG). To be more specific, the first component NLU is
implemented to encode users’ utterances towards understanding
users’ intention via categorization. Following that, DST keeps
tracking users’ goals and constraints as the conversation continues.
And most importantly, it determines the values of predefined
slots in each turn. Thereafter, the policy network component
is responsible to decide what actions to take at the next step.
Ultimately, NLG gives the final responses based on the efforts of
the former steps, which technologically can be implemented by the
predefined sentence templates [11] or generation-based methods
[7]. In addition to the four-stage pipeline, some end-to-end task-
oriented dialog systems emerge [25]. Thereinto, the reinforcement
learning has proven to be effective in this task [7, 35].

Despite the success of task-oriented dialog systems in various
tasks, they still suffer from the following limitations. 1) The
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Figure 1: Illustration of a multimodal dialog between
a shopper and a chatbot. The shopper expresses his
requirements and preference for products step by step as the
dialog goes on. And the chatbot generates the multimodal
responses based upon the context.

old proverb says, “a picture is worth a thousand words”,
yet most existing dialog systems only focus on the textual
utterances, ignoring the fact that people tend to communicate
with multimodal information. 2) To obtain the desired product,
users may particularly pay more attention to certain aspects or
attributes of products when interacting with the chatbots. As
shown in Figure 1, the user expresses the preferred attributes
with visual images, such as color and style. However, very limited
efforts have been dedicated to the attribute-level attention of users.
Accordingly, it is highly desired to devise smarter multimodal
dialog systems considering the users’ attribute-level attention.

However, it is non-trivial to well-address the aforementioned
problems due to the following challenges. 1) In existing e-
commerce websites, the products are actually organized as a
hierarchical tree structure, whereby similar products share more
common properties. Modeling the informative taxonomy when
encoding the visual images to learn the distinguishable and
interpretable representation is a challenge we are facing. 2) In the
dialog settings, users usually describe their attention through text.
Thus how to identify the pivotal words in users’ descriptions and
effectively extract more informative textual features is a tough
issue. And 3) indeed, the products share some common attributes,
such as color, style and material, semantically describing the
key characteristics of products. Users’ attention to products is
frequently expressed with these attributes, as exemplified in Figure
1. Therefore, how to integrate images and text to explore the users’
attribute-level attention is worth studying.

In this paper, we propose a novel User attention-guided
Multimodal Dialog system to address the issues mentioned above,

named UMD for short. As shown in Figure 2, from the high-
level perspective, a bidirectional Recurrent Neural Network (RNN)
is applied to model the interaction between the user and the
chatbot; As to the low-level perspective, the multimodal encoder
and decoder are supposed to encode multimodal utterances and
generate multimodal responses, respectively. In the multimodal
encoder, in order to acquire more distinguishable and interpretable
visual representation, we apply a hierarchy-aware tree encoder to
learn the taxonomy-guided attribute-level visual representation.
For textual utterances, the textual RNN, augmented by a
Convolutional Neural Network (CNN)-based attention mechanism,
takes the textual messages as input and outputs attentive textual
features. As shown in Figure 3, visual features are extracted by a
CNN model, and then fed into a taxonomy-attribute combined tree.
Encoded by the hybrid tree, visual features are then interacted and
weighted by textual features in the attribute level. Ultimately, the
visual and textual features are fed into a Multimodal Factorized
Bilinear Pooling (MFB) [42] module to generate the utterance
vector. Pertaining to the multimodal decoder, it inputs the context
vector from the high level RNN, and then outputs a textual
response and the selected images. Overall, a RNN-based response
decoder generates the textual response and the model ranks the
images by maximizing the margin between the cosine similarities
for the positive and negative samples. To justify the effectiveness
of our proposed model, we compare it with several state-of-
the-art baselines over a multimodal dialog (MMD) dataset. The
experimental results show the superiority of our model.
To sum up, the contributions of our work are threefold:

e We propose a novel hierarchical encoder to learn the
taxonomy-guided attribute-level representation of product
images in multimodal dialog systems.

o As far as we know, this is the first work to attentively
integrate the images and text to explore users’ attribute-
level attention to products in dialog systems.

e We comprehensively justify our model by comparing it with
several state-of-the-art baselines. In addition, we release our
code and data to promote the research in this field!.

This paper is structured as follows. The related work is
introduced in Section 2. In Section 3, we explain the proposed
model in detail, followed by the experiments and the analysis of
the model performance in Section 4. Finally, Section 5 concludes
the work and figures out the future research directions.

2 RELATED WORK

Our work is closely related to a variety of dialog systems, which
could be roughly divided into two categories: the text-based dialog
systems and the multimodal ones.

2.1 Text-based Dialog Systems

Extensive research efforts have been dedicated to the study of
the text-based open-domain and task-oriented dialog systems
over the past few years. According to their applications, open-
domain dialog systems [5, 36] aim to chat with people in diverse
topics, while task-oriented ones [32] focus on assisting users to

!https://github.com/ChenTsuei/UMD
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Figure 2: Schematic illustration of our proposed model. At the high level, a bidirectional RNN is used to model the ongoing
dialog; As to the low level, the multimodal encoder and decoder are applied to encode multimodal utterances and generate

multimodal responses, respectively.

accomplish some specific tasks. The former is technologically
implemented by retrieval- or generation-based methods. Retrieval-
based methods [38, 39, 41] leverage the dialog history to rank
the response candidates, and then return the top one to users.
By contrast, the generation-based ones model the mapping
between the dialog history and its response using an encoder-
decoder framework [33]. Recently, the attention mechanism [2]
has been incorporated into these generation-based methods to
improve the performance [21]. As for the multi-turn text-based
dialog systems, HRED [27] encodes the multi-turn context and
generates its response hierarchically while VHRED [28] adds latent
stochastic variables to HRED for diverse responses. Besides, deep
reinforcement learning is also used to strengthen the generation-
based dialog systems [16].

Different from formulating the response generation as a
mapping problem, task-oriented dialog systems follow a typical
pipeline [13, 22]. They usually encode user utterances firstly
and then determine the current state. They next decide the
following policy, take the corresponding action and give the
final response orderly according to the current state. However,
this pipeline brings several serious problems [14]. 1) Errors
from upstream components would propagate and accumulate
along the pipeline. 2) There is heavy interdependence among the
components. And 3) the training and testing of these task-oriented
dialog systems require large-scale annotated data in specific
domains. To alleviate these issues, many end-to-end dialog systems
[3, 17, 35] integrating the strength of reinforcement learning and
supervised learning have been introduced recently. Knowledge [9]
is also integrated into dialog systems to generate more informative
responses. Many of them [25, 35] issue a symbolic query to
retrieve the required entries or relations from a knowledge base
(KB), which is replaced by “soft” posterior distribution over KB in
subsequent methods [9]. Lei et al. [14] developed a belief spans-
based framework to avoid the complex architecture. Although
the existing dialog systems have made much progress, these

efforts neglect the importance of visual information in the human-
machine dialog.

2.2 Multimodal Dialog Systems

Due to the rich visual semantics conveyed by product images[10],
the demand for multimodal dialog systems is increasing. However,
the study in this area has been limited due to the lack of large-
scale multimodal dialog datasets. To this end, Saha et al. [26]
constructed a MMD benchmark dataset. Besides, the authors
developed two benchmark baselines for two tasks: the textual
response generation and the best image response selection. Later,
Liao et al. [18] presented a knowledge-aware multimodal dialog
(KMD) model to generate more substantive responses, where deep
reinforcement learning is integrated with the hierarchical neural
models to improve the performance. Different from KMD, in this
work, we pay more attention to the user requirements explicitly in
the attribute level and encode the dialog history dynamically based
on users’ attention.

In addition, our work is relevant to several cross-modal
problems, such as visual question answering (VQA) [1], visual
dialog [6] and image captioning [37]. The difference is that
multimodal dialog systems focus more on multi-turn multimodal
interaction between users and chatbots.

3 USER ATTENTION-GUIDED MULTIMODAL
DIALOG SYSTEM

In this section, we will detail the proposed model. To avoid the
heavy reliance on the annotated data of the typical pipeline, we
present a unified neural model to accomplish two tasks: the textual
response generation and the best image response selection. As
shown in Figure 2, the proposed scheme models the multimodal di-
alog hierarchically: from the low-level perspective, the multimodal
encoder and decoder are able to encode multimodal utterances
and generate multimodal responses, respectively. Meanwhile, the
high-level RNN model characterizes the entire dialog process at the



Utterance
Vector
Srow me some I}
similar pants in style similar pants in style
as in this image. as in this image. @ rextuai modaiity

E:.

. Multimodal Encoder

Figure 3: Schematic illustration of the multimodal encoder.

A taxonomy-attribute combined tree is applied to learn
the visual representation. The attention-augmented RNN
encoder is incorporated to output attentive textual features
and then the visual features are weighted by textual ones
in the attribute level. They are ultimately fed into a
multimodal fusion layer (MFB module) to generate the
utterance vector.

utterance level. To be more specific, the multimodal encoder takes
users’ and chatbots’ multimodal utterances as input and outputs
the utterance vector. The high-level RNN inputs the utterance
vector, and outputs the hidden state as the context vector at each
step. As for the multimodal decoder, it generates a textual response

and selects several images on the basis of current context vector.

Notably, some utterances in the dialog may be only presented
in the textual modality, where the encoder and decoder do not
process visual images. Ultimately, the multimodal response is fed
back to users.

3.1 Multimodal Encoder

In this component, we integrate the textual utterances and visual
images to learn the multimodal utterance representation. Given
a textual utterance U and a product image i, we leverage a
taxonomy-attribute combined tree and attention-augmented RNN
to learn the taxonomy-guided attribute-level visual representation
and extract attentive textual features, respectively.

3.1.1 Attention-augmented RNN. It is well-known that the
words in textual utterances are not equally important. Some words
could convey important information regarding users’ intention
and preferences, while others may be some common or supportive
words in our daily conversations, such as “hello”, “is” and “me”. The
latter is extremely frequent in the training data, heavily hindering
the propagation of users’ requirements. To alleviate this problem,
we leverage a CNN-based attention mechanism to attentively
weigh the words in textual utterances in order to maximize the
useful information about users’ requirements.

The textual utterance U is first fed into a RNN model equipped
with bidirectional Long Short Term Memory units (Bi-LSTM), and
then weighted by the scores of CNN-based attention mechanism
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Figure 4: The proposed taxonomy-attribute combined tree.
The solid lines connect the nodes that the image will pass
through from top to bottom; whereas the dash lines denotes
the irrelevant categories. Notably, all products share N
common attribute nodes in the attribute tree.

to output the final attentive textual features. Formally, a sequence
of hidden states of the RNN encoder are calculated as follows,

{W = {w1, wz,...,wr}, 0
h = f(he, ew,),
where w; denotes the t-th token in the textual utterance U, T is the
length of the textual utterance, ey, refers to the embedding vector
of wy, h¢ is the hidden state of the RNN at time ¢, and f is the non-
linear function in LSTM units. Thereafter, the hidden states are put
into a CNN model to estimate their weights,
s = CNN(h1, hg, ...,hT),
__exp(si) @
Sy expls))
where the textual CNN structure is shown in Figure 3. Thereinto,
the symbol s refers to the output of the CNN, and the weights ;s

are acquired by the softmax of s. Ultimately, the textual feature t
is calculated by
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3.1.2  Taxonomy-attribute combined tree. In many e-commerce
websites, extensive products are divided into various categories,
and organized into a hierarchical tree structure. Intuitively, the
same kind of products share a lot of common visual features[20].
Taking the pants in Figure 1 as an example, they are similar in
many visual properties, such as shape, proportion and appearance,
which facilitate users to navigate or recognize the desired products
(men’s pants) easily. Another observation is that these pants are
distinguishable in the attribute level and the customers always
select them by these detailed attributes, such as color, style and
material. Therefore, in order to extract more representative and



distinguishable visual features, we introduce a taxonomy-based
hierarchical encoder. Besides, we define N common attributes
for products, and then construct a key-value attribute tree to
explore users’ attention to products in the attribute level. The keys
correspond to the N common attributes, such as color; while the
values are the specific values of the attributes. For example, the
attribute “color” has several values such as blue, black and yellow.

As shown in Figure 4, given a product image i, it is firstly
encoded by a CNN module,

v’ = CNN(i), 4

where the CNN module is implemented by several pre-trained
layers based upon the Deep Residual Network [12] and the specific
parameters are listed in Figure 4. It is followed by a taxonomy-
based tree, consisting of L layers and M leaves. Each leaf node
denotes a kind of products and the categories are organized as
a hierarchical tree. Notably, there is only one path where an
image walks through from top to bottom because a product image
only falls into one leaf category. Next, the features are fed into
N parallel attribute nodes, and then their corresponding value
nodes. Formally, supposing the given image i belongs to the
path P = {p1,p2,....pL} and has attribute value encoders A =
{ai’, a;’, s aﬁ}, we can update the visual features v with the guide
of taxonomy information in the attribute level,

vi= P1 (VO),
Vi = pp (VR

vh=pr v, )
Vi = af(alf(vL)),

W\ = ag(ay (V).
where py denotes the CNN encoder of the image i in the L-th layer
of the taxonomy tree, v' refers to the output of pr, a]kv means the
encoder of the N-th attribute key node, ay, corresponds to the
encoder of the N-th attribute value node for image i, and V =
{v1,Va,...vN} is the output of the taxonomy-attribute combined
tree encoder for the image i.

Next, the attentive textual feature t and visual feature V are
used to calculate the users’ attention scores in the attribute level,

ej = MFB(vi,t) i=1...N,
P iC ) (©)

=N exple))
where MFB integrates the multimodal features and outputs the
corresponding scores, and f;s denote the attention scores of visual
features. Ultimately, the taxonomy-guided attribute-level visual
representation v is updated by

N
v=> i @)
i=1

3.1.3  Multimodal fusion layer. Rather than simply concate-
nating the textual feature t and visual feature v, we leverage
a MFB layer to get the multimodal utterance vector, which
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Figure 5: Illustration of the multimodal decoder. A RNN-
based decoder is to generate a textual response; And the
image selection is to maximize the consine similarity for
positive and negative samples.

has demonstrated the effectiveness and efficiency of combining
multimodal features in the VQA task [42]. In this way, the
multimodal utterance vector u is formulated as,

u= SumPooling(UTt o VTV, k), 8)

where UT and VT are the transform matrices projecting t and v to
the common high dimensional space, respectively, o denotes the
element-wise product, and the function SumPooling(x, k) means
using a one-dimensional non-overlapped window with the size k
to perform sum pooling over vector x.

3.2 Utterance-level RNN

Utterance-level RNN transfers the information between users and
chatbots. Utterance vectors are from the multimodal encoder;
whereas context vectors are fed into the multimodal decoder.

As shown in Figure 2, the utterance RNN takes the utterance
vector uj from the multimodal encoder, and then calculates a
current hidden state as the context vector c¢; at the step i,

¢ = f(ci-1, i), 9)

where u; refers to the multimodal utterance vector at the step i,
and f is the non-linear function in LSTM units.

3.3 Multimodal Decoder

3.3.1 RNN-based response decoder. The objective of this
component is to generate a textual response on the basis of context
vector c¢. The RNN is initialized by the vector ¢, and updated by

St = f(st—l’ €wi g )’ (10)

where s¢ denotes the hidden state at the step ¢ and ey,_, refers to
the embedding of token w1 in the response. The RNN decoder
calculates the probability of every token in the response by linearly
projecting the hidden state to a one-dimensional vector in the
vocabulary size,

p(wile, w1, ..., wi—1) = ot - as(Wpst + bp), (11)



whereby W, and by are the parameters of the linear projection
layer, o5 means the softmax function, w; is the i-th token in
the response and oj is the one-hot vector of w;. Formally, the
probability of generating the whole response p(w1, wa, ..., wr|c) is
given by

T
plwr, .o wrle) = pwile) | | plwile, wi, oo wict). (12)
i=2
The loss function of a textual response is formulated as,

T
liext = —logp(wile) = ) logp(wile, wr, ..owizy),  (13)
i=2
where the smaller (iext implies the higher probability to generate
the entire target response {wi, wa, ..., wr}.

3.3.2  Pairwise ranking. Given a set of visual images, this
component is to rank them based on the relevance between the
image and the context. In addition, considering the connection
between the context and the product attributes behind visual
images, we especially incorporate the textual attributes into the
ranking process.

Formally, the textual attributes are organized as a sequence
of words, and then fed into the multimodal encoder with visual
images, finally outputting the multimodal product representation.
In this task, given some products comprising Npos positive samples
and Npeg negative ones for a dialog sample, we calculate the cosine
similarity between their product representations and the context
vector. When training the model, a max-margin loss is applied to
maximize the margin between the similarities for the positive and
negative samples,

fimage = max(0, 1 - Sim(c, YPOS) + Sim(c, Yma_g))’ (14)

where ypos and yneg are the representations of positive and nega-
tive samples, respectively, and the function Sim(a, b) calculates the
cosine similarity of a and b. As for the testing period, the model
ranks the images based on the cosine similarity.

4 EXPERIMENTS

In this section, we first introduce the experimental dataset and
settings, including hyper parameters, evaluation metrics and
several baselines. It is followed by the objective and subjective
comparison between the baselines and UMD. Ultimately, we
present some representative cases and the error analysis.

4.1 Dataset

A large-scale multimodal dialog dataset in vertical domains plays
a pivotal role in developing the task-oriented multimodal dialog
systems. Fortunately, Saha et al. [26] contributed a MMD bench-
mark dataset in the retailing domain with over 150k conversations
between customers and chatbots, and each conversation describes
a complete online shopping process. During the conversations,
the user proposes his/her requirements in multimodal utterances
and the chatbot introduces different products step by step until
they make a deal. Each multimodal conversation involves images
and text, and is constructed by the in-house annotators using a
semi-automated manually intense iterative manner [26] under the
supervision of domain experts. Over 1 million fashion products

Table 1: Detailed statistics of the MMD dataset.

Dataset Statistics Train | Valid | Test
#Dialogs(chat sessions) 105,439 | 22,595 | 22,595
#Proportion in terms of dialogs 70% 15% 15%
Avg. #Utterances per dialog 40 40 40
¥ : >

Utte.rances with shopper’s oM 446K | 445K
question
# i s i

Utterances with agent’s image 904K 194K 193K
response
¥ : ;

Utterances with agent’s text 1.54M 331K 330K
response
Avg. #Positive images in agent’s 4 4 4
image response
Avg. #Negative images in agent’s 4 4 4
image response

L# i ’
Avg .Words in shopper’s 12 12 12
question
L # i ’

Avg. #Words in agent’s text 14 14 "
response
p -

Vocabulary Size 26422 | - )

(threshold frequency>=4)

with their available semi/un-structured information are collected
from the well-known online retailing websites, such as Amazon?,
Jabong®, and Abof*. Notably, we crawled their visual images from
the websites additionally and released them in our experimental
data. Based on the MMD benchmark dataset, Saha et al. also
proposed several research tasks, including the textual response
generation and the best image response selection. For the former
task, the textual responses of chatbots are selected as the predicted
ones and their preceding multimodal utterances are treated as the
dialog context in each conversation. When it comes to the latter,
the annotators selected several negative samples for each image
in the conversation. The MMD dataset provides five target images
for each sample and only one image is correct. Considering that
the users tend to express their attention to the products in the
attribute level, we incorporated the attributes of products into the
selection of images. We chose several common attributes from the
product information and the key-value attributes were organized
as a sequence of words. More detailed information about the MMD
dataset is summarized in Table 1.

4.2 Experimental Settings

4.2.1 Hyper parameters. In the training period, following the
parameters settings in MMD [26], we used two-turn preceding
utterances before the response as the context. The vocabulary
size is 26,422 and the low frequency words out of the vocabulary
is mapped to a special token “UNK”. In the multimodal encoder,
textual utterances are encoded by a bidirectional LSTM model with
one layer and 1,024 cells. The kernel sizes of the two-layer textual
CNN model are (128 x 1 x 1) and (30 X 1 X 1), respectively. As
for the taxonomy-attribute combined tree, we defined 3 layers, 87

Zhttps://www.amazon.com/.
Shttps://www.jabong.com/.
*https://www.abof.com/.



leaves, and 6 attributes. Other detailed visual CNN kernel sizes are
displayed in Figure 4. The window size k in MFB is set as 2. In the
multimodal decoder, textual responses are generated by a LSTM
model with 1,024 cells. The margin in the max-margin loss is set as
1. We optimized the parameters of the unified model using Adam
[8] with the learning rate initialized as 0.0004.

4.2.2  Evaluation Metrics. To evaluate our proposed model, we
adopted several objective metrics following the former studies [26].
In the task of textual response generation, BLEU-N [23] is applied
to measure the similarity between the predicted response and the
reference. To be more specific, BLEU-N is formally defined as,

N
BLEU-N = exp(min(1 — g, 0) + Z wp log pn), (15)
n=1
where p, refers to the modified n-gram precision in [23], wp
is equal to ﬁ and r and c denote the lengths of the reference
response and the predicted one, respectively. Intuitively, higher
BLEU scores mean more n-gram overlaps between the compared
responses, and thereby indicate better performance. Meanwhile,
with more grams varied from unigram to 4-gram, BLEU-4 is used
more frequently in the task of machine translation and dialog
systems [23, 26].

For the best image response selection, we used Recall@top-m
to measure the performance of the models, where m is varied from
1 to 3. The result is correct only if the positive sample is ranked in
the top-m samples.

4.2.3 Baselines. To demonstrate the effectiveness of our
proposed user attention-guided multimodal dialog system, we
compared our model with several representative methods.

e SEQ2SEQ+Attention: As a representative encoder-decoder
framework, attention-based SEQ2SEQ [2] has demonstrated
its effectiveness in many natural language processing tasks,
therefore it is generally used as a baseline in generation-
based dialog systems.

e HRED: In text-based multi-turn dialog systems, HRED [27]
is a state-of-the-art method by modeling the long context
hierarchically. A word-level RNN encodes each word in one
sentence step by step; and a sentence-level RNN is applied
to encode the sentence representation.

e MHRED: Multimodal hierarchical encoder decoder (MHRED)
architecture is proposed by Saha et al. [26] along with
the MMD dataset. It is the first work to construct the
multimodal dialog system, which incorporates the visual
features into the text-based HRED model and achieves the
promising performance.

e KMD: KMD (18] incorporates memory network [31] and
deep reinforcement learning into the multimodal dialog
systems and achieves the state-of-the-art performance.
However, the complex structure and the special need
for semi-structured product data heavily hinder the
reproducibility of KMD. Without the required data and code,
we failed to reproduce the performance of the model and
thus only compared it with UMD by the metrics reported in
[18].

I Can you show something

Similar to the 3rd image ?

| intend to look at a
few trousers for myself .

Figure 6: The visualization of the attention scores of two
sentences in the context.

4.3 Objective Performance

4.3.1 Evaluating the textual response generation. For the task
of the textual response generation, we applied BLEU-N metrics
to measure the performance, where N varies from 1 to 4. Table
2 presents the results of the baselines and UMD. From that, we
observed the following points:

e UMD surpasses the baselines in BLEU scores, proving that
on average, UMD generates more overlaps between the
predicted responses and the reference than other methods.

e By analyzing the generated responses, we found that the
relatively high BLEU-1 score owes to the more accurate
short responses (e.g., "Yes" and "No") for the queries
related to attributes of products, which demonstrates the
incorporation of the taxonomy-attribute combined tree is
efficient in representing users’ attention to products in the
attribute level.

o The text-only methods show comparable performance with
the multimodal ones, demonstrating that the generation of
textual utterances depends more on the textual features
than visual features.

4.3.2  Evaluating the best image response selection. We evalu-
ated the performance of the best image response selection by
comparing the recall scores. We can observe the following findings
from Table 2:

e UMD performs very well and surpasses all the baselines in
this task. Almost all positive images are ranked at the top
when testing the performance of UMD. In our opinion, we
can analyze the reasons from three aspects: 1) The baselines
leverage the 4,096 dimensional visual features extracted by
VGGNet-16 [30] as the visual representation of products,
which heavily restricts the effect of product images;
whereas UMD applies the taxonomy-attribute combined
tree to learn more distinguishable visual representation of
the original product images. 2) The textual utterances in
the context involve many users’ requirements about the
attributes of products, such as name, type, material and
color. The experimental results implied that incorporating
the attributes into the selection of images is really helpful.
And 3) the positive and negative samples in MMD
dataset usually have different categories or distinguishable
attributes, partly leading to the superior performance of
UMD.

o The performance of the multimodal methods is much better
than the text-only ones in this task. It is because that the



Table 2: Objective performance of UMD and the baselines in the tasks of the textual response generation and the best image
selection. *In particular, we failed to compare KMD with other methods by these metrics in the same textual testing data due
to its special need for the semi-structured data constructed by its authors.

Methods Text Task Image Task
Metrics BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | Recall@1 | Recall@2 | Recall@3
Text-only | SEQ2SEQ 35.39 28.15 23.81 20.65 0.5926 0.7395 0.8401
Methods HRED 35.44 26.09 20.81 17.27 0.4600 0.6400 0.7500
Multimodal MHRED 33.56 28.74 25.23 21.68 0.7980 0.8859 0.9345
Methods KMD* - - - - 0.9198 0.9552 0.9755
UMD(Ours) 42.78 33.69 28.06 23.73 0.9796 0.9980 0.9990

Table 3: Subjective comparison between the responses of UMD and other baselines according to four evaluation factors.

Fluency Relevance
Opponent Win | Loss Tie | Kappa | Win Loss Tie Kappa
UMD vs. SEQ2SEQ | 12.9% | 12.2% | 74.8% 0.59 17.0% | 7.5% 75.5% | 0.46
UMD vs. HRED 25.2% | 9.2% | 65.6% 0.38 20.1% | 7.5% 72.4% | 0.40
UMD vs. MHRED | 84.0% | 5.1% | 10.9% | 0.60 | 64.3% | 9.2% | 26.5% | 0.46
Logical Consistency Informativeness
Opponent Win | Loss Tie | Kappa | Win Loss | Tie Kappa
UMD vs. SEQ2SEQ | 17.3% | 16.0% | 66.7% | 0.43 | 30.3% | 24.5% | 45.2% | 0.48
UMD vs. HRED 19.7% | 16.3% | 63.9% 0.36 18.0% | 39.5% | 42.5% | 0.50
UMD vs. MHRED 64.3% | 10.2% | 25.5% 0.49 74.8% | 6.5% 18.7% | 0.67

similarity among product images definitely plays a key role
in the selection of the best images.

4.4 Subjective Evaluation

Considering that sometimes the objective metrics are not com-
pletely accurate to evaluate the responses [19], we also designed
the subjective evaluation. 1,000 samples with the multimodal
context are randomly chosen from the testing data, and then
their contexts are fed into UMD and three baselines to generate
the textual responses and select the visual images. Thereafter,
the 1,000 multimodal responses of UMD are compared with the
corresponding responses generated by the three baselines. In
this way, we obtained 3,000 pair-wise responses. And then we
carried out the subjective evaluation by the following disciplines:
1) Three annotators compared the pair-wise responses from four
perspectives independently: fluency, informativeness, relevance,
and logical consistency. 2) The annotators were required to choose
one option from “win”, “loss” and “tie”, indicating “the first
response is better", “the first response is worse" and “it is hard
to tell which is better”, respectively. Notably, the order of the
responses is shuffled randomly. 3) When collecting the statistic
results, we calculated the averaged values of three annotators and
their kappa scores. As a result, the kappa scores [24] indicate that
the annotators reached a moderate agreement with the quality of
the responses. Ultimately, the results of subjective evaluation are
presented in Table 3.

From Table 3, we can summarize the following conclusions: 1)
UMD outperforms the baselines in most comparisons, especially in
the logical consistency. 2) Most responses of SEQ2SEQ, HRED and
UMD are fluent so that the annotators chose lots of “ties” in their
comparisons. 3) HRED is inclined to generate more informative

responses. Nevertheless, they are limited in maintaining the
relevance and logical consistency. 4) MHRED performs the worst
in the subjection evaluation. The repeated phases and syntax
errors heavily hurt its fluency and logical consistency. 5) The
comparable performance of text-only methods demonstrates our
former conclusion again: although the visual features may help
to generate the detailed product information, the textual response
generation task depends more on the textual features.

4.5 Discussion

4.5.1 Case Study. Figure 7 lists four cases sampled from the
test data, and only the responses generated by UMD and MHRED
are shown due to the space limitations. Notably, MHRED actually
performs better than other baselines in these samples. From Figure
7, we can have the following observations:

e The general responses are well predicted, such as “Image
from the front, right, back and left orientations respectively”
in Case 1 and “let me just quickly browse through my
catalogue” in Case 3. It is because that they are frequent
in the training data and their features are quite easy to
recognize.

e Taking Case 2 and 3 for example, many responses generated
by UMD are quite different from the ground truth while
they are also reasonable. In fact, considering the taxonomy
and attributes of products, UMD may convey other useful
information to users by textual utterances.

e UMD generates more informative responses than MHRED
by exploring more distinguishable visual features and
more representative textual features. And MHRED tends
to generate repeated phrases, which heavily decrease the



Found some products & % ‘
aa you may like. = = —

Suggest me images of the 3rd result
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[ Can you show more black flip flops? ] g

@ That is helpful. let me just quickly browse
through my catalogue of items
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<unk> your filp flops the filp flops.

| Regarding the 1st one, Methyz unisex flip flop -

| UMD [ made from export quality rubber. D 0 -’
what you can see in the first item, upgrade ’ al ’
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Image from the front, right, back and left ] The loafers in the 2nd, 3rd and 1st images will
GT o ) g 9

| [ orientations respectively. ‘__ g [ g GT suit well for dry clean care.
I
| Case 3 Case 4

I would like to see few of your top Alvaro
Castagnino brand tie with micro fibre
material for my father.

2

@ 1 will just make a quick search through
my catalogue of fashion items,

What you can see in the 2nd image, the the similar ones

<unk> perfect gift. ] ‘ . . |
UMD See the first one, they present this black coloured combo, |
which is a perfect gift for your father <unk> <unk>. £ ‘ . |

What you can see in the first one, Ellis presents this ’ l

MHRED

GT black coloured combo, which is a perfect gift for your

father on his birthday.

|
__________________ J

Figure 7: Case Study. Each case includes the context, the ground truth responses (GT), and the responses generated by MHRED
and UMD. The dash lines divide the context and its corresponding responses into two parts. The ellipsis implies that there are
more conversational interactions before the current utterances, whereas they are omitted due to the space limitations.

fluency of responses but may produce higher BLEU scores,
such as Case 2 and 3.

4.5.2 Error Analysis. To analyze the performance of UMD
objectively, we collected the bad responses which “lose” in the
subjective evaluation and tried to analyze the causes. We counted
the proportion of the bad responses in each metric. Accordingly,
the bad cases in fluency, relevance, informativeness and logical
consistency occupy 16.2%, 14.7%, 43.2% and 25.9%, respectively.
From that, we can conclude that: 1) Although UMD generates
many fluent and relevant responses, a high percentage of bad
responses lose in the comparison because they are not long
enough and thereby decrease the informativeness. 2) The logical
consistency of generated responses is still far from perfect due to
the complexity of human language. These conclusions point out
the disadvantages of UMD objectively and are definitely helpful to
improve the model in the future.

5 CONCLUSION AND FUTURE WORK

In this work, we aim to build more intelligent multimodal
dialog systems. To this end, we propose a hierarchical user
attention-guided multimodal dialog system to learn the taxonomy-
aware attribute-level visual representation and explore the user
attention to products in the attribute level. From the high-level
perspective, a bidirectional RNN model is applied to encode
the utterance-level interaction between the user and chatbot.
For the low-level perspective, the proposed multimodal encoder
leverages a taxonomy-attribute combined tree and attention-
based RNN to learn the multimodal utterance representation;

whereas the multimodal decoder is designed to generate the
textual responses and rank the visual images. We carry out
extensive experiments on the MMD benchmark dataset and our
proposed model yields promising performance in two tasks: the
textual response generation and the best image response selection.
Through the analysis of the experimental results, we can draw
some conclusions: 1) Learning more distinguishable visual features
by the multimodal encoder and incorporating the textual attributes
into the multimodal decoder are very helpful in the selection of
images. 2) Despite lots of responses of UMD are different from the
ground truth, many of them are reasonable and convey meaningful
information about the products. 3) As for the task of the textual
response generation, it has a stronger dependence on textual
features than visual features.

Although UMD performs well in the two basic tasks, we believe
that there will be some other challenging issues in the real
application. Therefore, we will proceed to promote the research
work in the field from several aspects, such as the modeling
of users’ historical preference and the application of domain
knowledge.
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