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Modeling Disease Progression via Multisource
Multitask Learners: A Case Study

With Alzheimer’s Disease
Liqiang Nie, Luming Zhang, Lei Meng, Xuemeng Song, Xiaojun Chang, and Xuelong Li, Fellow, IEEE

Abstract— Understanding the progression of chronic diseases
can empower the sufferers in taking proactive care. To predict the
disease status in the future time points, various machine learning
approaches have been proposed. However, a few of them jointly
consider the dual heterogeneities of chronic disease progression.
In particular, the predicting task at each time point has features
from multiple sources, and multiple tasks are related to each
other in chronological order. To tackle this problem, we propose
a novel and unified scheme to coregularize the prior knowledge
of source consistency and temporal smoothness. We theoretically
prove that our proposed model is a linear model. Before training
our model, we adopt the matrix factorization approach to address
the data missing problem. Extensive evaluations on real-world
Alzheimer’s disease data set have demonstrated the effectiveness
and efficiency of our model. It is worth mentioning that our
model is generally applicable to a rich range of chronic diseases.

Index Terms— Disease progression modeling, future health
prediction, multisource analysis, source consistency, temporal
regularization.

I. INTRODUCTION

CHRONIC disease can be controlled but not cured.1

It typically lasts over a long duration with slow
progression. Some examples of lifelong progressive chronic
diseases include stroke, asthma, diabetes, and hypertension.
Chronic disease affects the population and wellness system
worldwide. As reported by the Centers for Disease Control,2
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chronic diseases are the leading cause of death and disability
in the U.S., which account for 70% of all deaths. As a nation,
the U.S. spends 86% of healthcare dollars on the treatment of
chronic diseases.3 Data from the World Health Organization4

show that chronic diseases are also the major cause of
premature death around the world even in the places, where
infectious diseases are rampant. Although chronic diseases
are among the most common and costly health problems, they
progress over a long-period time to become fully established,
which offers us great opportunities for prevention.

Many clinical measures have been designed to evaluate
the disease status and used as essential criteria for clinical
diagnosis of probable chronic diseases. For example,
mini mental state examination (MMSE) and Alzheimer’s
disease (AD) assessment scale cognitive subscale (ADAS-
Cog) are prevailing to estimate the severity and progression
of cognitive impairment of AD [1]–[3]. A comprehensive
understanding of the chronic disease progression based on
these clinical measures is the key to preventive care and
personalized medicine. However, progression modeling for
chronic diseases is nontrivial due to the following reasons.
First, recent advances in medical technologies have made it
popular to collect various complementary types of data of the
same patient, which describe his/her disease statuses from
different view points. Take the study of AD as an example.
Different types of clinical measurements, such as subject
characteristics, medical history, genetic information, and
imaging data, are usually collected, because their combination
can potentially provide a more accurate and rigorous assess-
ment of disease status and likelihood of progression. How to
effectively integrate information from multiple heterogeneous
sources to comprehensively characterize the given patient is
a challenge. Second, a multisource analysis may suffer from
the problem of missing data for some specific sources. This
is especially the case for expensive measures such as positron
emission tomography (PET) scans, where patients have a
high chance of dropout or partial attendance in a longitudinal
study. Besides, missing data are frequently occurred due to
privacy concerns. Last but not least, the progression prediction
at each time point is highly correlated. How to identify and
model their intrinsic relatedness is of vital importance.

To address the above challenges, there already exist sev-
eral machine learning efforts dedicated to chronic disease

3http://www.cdc.gov/chronicdisease/
4http://www.who.int/chp/chronic_disease_report/contents/part2.pdf
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progression modeling. These efforts generally fall into three
categories. One is the single source single-task learning. In
this context, the disease statuses at different time points
are estimated separately by using data from a single source
[4]–[6]. Neither the correlation among tasks nor the com-
plementary information across sources is explored. Another
line of efforts is the multiple task learning [7], [8]. They
formulated the prediction of clinical scores at a sequence of
time points as a multitask regression problem, where each task
aims to predict a clinical score at one time point. Existing
approaches focus on improving the generalization performance
by learning multiple related tasks jointly. The relatedness
is modeled by assuming that they share either a common
representation space or some parameters. The third category
of approaches is the multisource learning [9]–[11]. It analyzes
how multiple clinical data sources describing the same subjects
can be combined to extract more comprehensive information
for disease status prediction at one time point. It is noteworthy
that the weaknesses of the latter two approaches are the
existing multitask learning explores the relatedness among
tasks, but disregards the consistency among different sources
of a single task; whereas the existing multisource learning
ignores the label information from other related tasks.

The problem of progression modeling for chronic diseases
exhibits dual heterogeneities: every task in the problem has
features from multiple sources, and multiple tasks are related
to each other in a chronological sequence. Therefore, by
jointly regularizing the relatedness of tasks and sources,
multisource multitask (MSMT) learning would be a better
choice for chronic disease progression. We propose a novel
MSMT regression model to predict the chronic disease
progression, because most of the clinical variables are
continuous. Our model takes two kinds of prior knowledge
into consideration. One is the temporal smoothness. In
particular, the sudden changes of disease statuses between
neighboring time points should be penalized. The other one is
the source consistency. The disagreement among multisources
is also penalized, since they are supposed to reflect the
same disease status. Our model differs from the traditional
multiview learning approaches [12], [13], which mainly focus
on semisupervised learning and employ unlabeled data to
maximize the agreement between different views. We focus
on multisource learning in a supervised setting, which is free
from a sufficient amount of unlabeled data. In addition, we
utilize a fast matrix factorization (MF) approach to efficiently
complete the missing data.

The contributions of this paper are in threefold.
1) We proposed a novel MSMT learning approach to

model the chronic disease progression, which regu-
larizes source consistency and temporal smoothness
simultaneously.

2) We theoretically proved that our proposed model is a
linear model and empirically demonstrated its efficiency.

3) We verified our model on the real-world and public data
set of AD.

The remainder of this paper is organized as follows.
Sections II and III, respectively, review the related
work and detail our proposed disease progression model.

Section IV introduces the data preprocessing. Experimental
results and analyses are presented in Section V. Finally, the
conclusions are drawn in Section VI.

II. RELATED WORK

Medical record search has attracted increasing research
attentions from information retrieval communities [14]–[21].
They all aim to return informative knowledge for health
seekers to take reactive care. In contrast, predicting disease
progression enables patients or clinicians to take proactive
management of their health problems. The future health status
can be measured by the clinically defined categories [22], [23]
or the continuous clinical scores [1], [3], such as MMSE and
ADAS-Cog. Broadly speaking, the existing efforts on disease
progression modeling can be grouped into three categories:
1) single source single-task learning; 2) multitask learning;
and 3) multisource learning.

Single source and/or single-task learning approaches in the
past decades dominated the literatures of disease progression
modeling. They focused on estimating the disease status
separately and usually utilized data from only a single source.
Various popular regression models were proposed to predict
the target at a single time point with one specific source, such
as exploring the magnetic resonance image (MRI) scans to
infer the targets at the time point of baseline [3] or in one
year [1]. Besides regression models, survival models were
introduced in [4] to predict the future disease status of liver
transplant patients by considering historical clinical variables
individually. In addition, some other approaches [5] considered
a small number of input features, and each feature was individ-
ually fed into the model to examine its effectiveness. However,
when there are a large number of features highly correlated,
these approaches are suboptimal. Meanwhile, they neither
consider the intrinsic correlation shared among different tasks,
nor utilize the complementary information hidden in multiple
sources. Their performance is thus far from satisfactory to be
clinically useful.

Multitask learning has attracted great attention in the past
decades [24]–[28] and were recently proposed to model the
disease progression. They discover the commonality among
different tasks and simultaneously learn a problem together
with other related ones. This often leads to a better model
than that of learning the individual tasks separately. The key
issue in multitask learning is how to identify and characterize
the relatedness among multiple tasks. Two kinds of relat-
edness have been studied in disease progression modeling.
One is that the multiple tasks are assumed to share parameters
or prior distributions of the hyperparameters. For example,
Zhou et al. [7] formulated the prediction of clinical scores at
a sequence of time points as a multitask regression problem
and captured the intrinsic relatedness among the different tasks
by a temporal group lasso (TGL) regularizer. The other way
of exploring the intertask relatedness is to assume that they
share a common underlying representation. For instance, the
work in [8] formulated a novel convex fused sparse group lasso
to select the common features for multiple tasks and specific
features of individual task in parallel.
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Fig. 1. Illustration of the context of our proposed MSMT learning model. At the baseline time point, we are given N subjects, and each subject is associated
with S sources. ynt is the label for the nth patient at time point t .

Multisource learning was initially proposed to integrate data
from multiple channels [29]–[32]. It was applied to seamlessly
sew clinical data, such as genetic, imaging, and medical
history, which is able to improve the accurate and rigorous
assessment of the disease status and likelihood of progression.
Ye et al. [9] proposed a multiple kernel learning method for
integrating imaging and nonimaging data for AD study and
extended the kernel framework for selecting features from het-
erogeneous data sources. Experiments showed that the integra-
tion of multiple data sources leads to a considerable improve-
ment in the prediction accuracy. One disadvantage of multi-
source learning is the prevalence of missing data. To address
this problem, two novel multisource learning methods [10]
were proposed to jointly analyze the incomplete multimodality
neuroimaging data, where subjects with missing measures
were also kept for training. One year later, Xiang et al. [11]
presented a bilevel learning model to handle multisource
blockwise missing data at both feature level and source level.

However, disease progression modeling exhibits dual het-
erogeneities. In particular, a single learning task might have
features from multiple sources, and multiple learning tasks
might be highly correlated by sharing some commonalities.
Existing multitask learning or multiview learning algorithms
only capture one type of heterogeneities. Zhang and Shen [33]
noticed such limitation and proposed a multimodal multi-
task learning approach. It treats the estimation of different
regression and classification variables as different tasks and
adopts one existing multitask learning model to learn a
common feature subset. Following that, it uses a separate
multimodal support vector machine method to fuse these
features. Instead of exploring the task relatedness and source
relatedness separately, in retrospect, there are a few literatures
on unified multisource multitask learning framework [34],
but none of them has been applied to disease progression
modeling. He and Lawrence [35] proposed a graph-based
iterative framework for multiview multitask learning (IteM2)
with its applications to text classification. IteM2 projects task
pairs to a new reproducing kernel Hilbert space based on the
common views shared by them. However, it is specifically
designed to handle nonnegative feature values. Even worse, as
a transductive model, it fails to generate predictive models on
independent and unknown samples. To address the intrinsic
limitations of transductive models, an inductive multiview

multitask learning model regMVMT was introduced in [12].
regMVMT uses coregularization to obtain functions consistent
with each other on the unlabeled samples from different views.
Across different tasks, additional regularization functions are
utilized to ensure that the learned functions are similar. How-
ever, simply assuming that all tasks are similar without prior
knowledge might be inappropriate. As a generalized model
of regMVMT, an inductive convex shared structure learning
algorithm for multiview multitask problem (CSL-MTMV) was
developed in [13]. As an improvement to regMVMT, CSL-
MTMV considers the shared predictive structure among mul-
tiple tasks. Noticeably, IteM2, regMVMT, and CSL-MTMV
are all binary classification models, which require nontrivial
extensions in order to handle multiclass problems, especially
when the number of classes is large. Furthermore, Jin et
al. [36] pointed out that all previous multiview multitask
learning approaches were based on the implicit assumption
that all tasks shared a common class label set. Many multiview
applications, however, are built upon tasks with different class
label sets.

III. DISEASE PROGRESSION MODELING

Let us first define some symbols and notations. In the
training set, we assume that we are given N chronic patients
X = [x1, x2, . . . , xN]T at the baseline time, and their cor-
responding disease statuses at the following T time points
Y = [y1, y2, . . . , yT] ∈ R

N×T. Each patient is characterized
by S complementary sources. For example, the nth patient
can be represented by xn = [xT

n1, xT
n2, . . . , xT

nS]T, where
xns ∈ R

Ds , and Ds denotes the dimensionality of feature
space for the sth source. All training samples described
by the sth source and by all the sources are, respectively,
represented as Xs = [x1s, x2s, . . . , xNs]T ∈ R

N×Ds and
X = [X1, X2, . . . , XS] ∈ R

N×∑S
s=1 Ds . Fig. 1 shows the

context of our model. Our objective is to generalize the disease
progression models from training patients to predict the future
disease statuses of new patients, given their health information
at the baseline time point.

A. Multisource Multitask Learning

We denote f t
s (xns) as the predictive function for patient n

at time t with the knowledge from source s. We define a linear
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predictive function for all patients in a vectorwise form as

ft
s(Xs) = Xswt

s (1)

where wt
s ∈ R

Ds is the parameter vector we aim to learn. The
disease statuses for all patients at time point t is modeled by
averaging the prediction results from all sources

ft(X) = 1

S

S∑

s=1

ft
s(Xs) = 1

S

S∑

s=1

Xswt
s. (2)

To model disease progression, we should simultaneously
consider two kinds of prior knowledge.

1) Source Consistency: We assume that heterogeneous
sources of the same patient describe a disease from
multiple views, but they should consistently reflect the
same disease status. In particular, for a given patient at
time point t , the disease status estimated by different
sources should be the same or very close.

2) Temporal Smoothness: Chronic diseases are the
long-term medical conditions that generally progress
smoothly.5 Hence, the sudden change of disease statuses
between neighboring time points should be penalized.

Mathematically, we can formulate the above two properties
into the following objective function, O(wt

s) :

min
wt

s

T∑

t=1

⎧
⎨

⎩

1

2

∥
∥
∥
∥
∥

yt− 1

S

S∑

s=1

Xswt
s

∥
∥
∥
∥
∥

2

+ λ

2

S∑

s=1

S∑

s ′ �=s

∥
∥Xswt

s−Xs′w
t
s′
∥
∥2

+ η

2

S∑

s=1

∥
∥wt

s − wt+1
s

∥
∥2 + μ

2

S∑

s=1

∥
∥wt

s

∥
∥2

⎫
⎬

⎭
. (3)

The first term is the widely adopted least square loss function
that measures the empirical error on the training data. The
second and the third terms control the source consistency
and temporal smoothness, respectively; while the last term
penalizes the generalization errors. λ and η are parameters that,
respectively, regularize the disagreement of heterogeneous
sources for the same task and difference between chronologi-
cally adjacent tasks on the same sources. μ is a parameter that
regulates the strength of the l2-norm regularization on MSMT
learning function.

It is notable that we define wT+1
s = 0 in the temporal

smoothness term in (3). As the original formulation of tem-
poral smoothness is infeasible for optimization, we redefine
it as

T∑

t=1

S∑

s=1

∥
∥wt

s − wt+1
s

∥
∥2 =

S∑

s=1

‖ WsH ‖2=
S∑

s=1

∥
∥
∥
∥
∥

T∑

t=1

wt
sh

T
t

∥
∥
∥
∥
∥

2

(4)

where matrix Ws = [w1
s , w2

s , . . . , wT
s ] ∈ R

Ds×T and matrix
H = [h1, h2, . . . , hT]T ∈ R

T ×(T −1). Matrix H is precalculated
by the following definition:

Hij =

⎧
⎪⎨

⎪⎩

1 if i = j

−1 if i = j + 1

0 otherwise.

(5)

5http://www.hpb.gov.sg/HOPPortal/health-article/3396

B. Optimization

By substituting (4) into (3) and taking the derivative of (3)
with respect to wt

s, we have

∂O

∂wt
s

= 1

S
XT

s

(
1

S

S∑

s=1

Xswt
s − yt

)

+λXT
s

S∑

s ′ �=s

(
Xswt

s − Xs′wt
s′
) + η

T∑

j=1

wj
sh

T
j ht + μwt

s.

(6)

We set (6) as zero and rearrange its elements. We afterward
obtain the following equation:

1

S
XT

s yt =
{

1

S2 XT
s Xs + λ(S − 1)XT

s Xs + μI + ηhT
t htI

}

wt
s

+
(

1

S2 −λ

)

XT
s

S∑

s ′ �=s

Xs′w
t
s′ + η

T∑

t ′ �=t

hT
t ht′w

t′
s (7)

where I is the identity matrix. To facilitate the optimization
analysis, we define some notations and rewrite (7) in the
following form:

At
s = Bt

sw
t
s +

S∑

s ′ �=s

Css′w
t
s′ +

T∑

t ′ �=t

Dtt′wt′
s . (8)

By aligning (7) with (8), we derive the following set of
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

At
s = 1

S
XT

s yt

Bt
s = 1

S2 XT
s Xs + λ(S − 1)XT

s Xs + μI + ηhT
t htI

Css′ =
(

1

S2 − λ

)

XT
s Xs′

Dtt′ = ηhT
t ht′I.

(9)

Equations (8) and (9) explicitly imply that we must jointly
learn wt

s and wt′
s′ from a large set of equations, where s′ �= s

and t ′ �= t . After combining the equations for all tasks on
all sources, we obtain a linear system (10), as shown at the
top the next page. Equivalently, we can represent this linear
system as

Ew = a (11)

where each entry in E ∈ R
(S×T )×(S×T ) is a block matrix.

Each block corresponds to a specific task on a specific source,
and its size is the dimensionality of the feature extracted from
the corresponding source. Similarly, w and a are block vectors
with S × T blocks. So far, we have successfully transferred
our proposed MSMT learning model to a linear model.
Intuitively, if E is invertible, we can easily derive an analytical
solution of w.

In this paper, E is invertible. Before proving this property,
we first introduce three preliminaries.

Preliminary 1: S denotes the number of sources. We are
considering multiple sources, and it is thus reasonable to
assume that S ≥ 2. Therefore, λ(S − 1) ≥ λ, when λ > 0.
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Preliminary 3: Without loss of generality, we denote zi as
an arbitrary block vector with the following property:
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i zj

= 1

2
‖ z1 − zK ‖2 +1

2

K∑

i=2

‖ zi − zi-1 ‖2 ≥ 0. (12)

To prove that E is invertible, we need to prove that
E is a positive definite matrix first. Without loss of gen-
erality, we define gT as a nonzero S × T block vector
with gT = [gT

11, gT
21, . . . , gT

S1, gT
12, . . . , gT

st, . . . , gT
1T, . . . , gT

ST].
We thus have

gT Eg =
S∑

s=1

T∑

t=1

gT
stB

t
sgst +

S∑

s=1

T∑

t=1

gT
st

×
S∑

s ′ �=s

Css′gs′t +
S∑

s=1

T∑

t=1

gT
st

T∑

t ′ �=t

Dtt′gst′

=
S∑

s=1

T∑

t=1

gT
st

{
1

S2 XT
s Xs + λ(S − 1)XT

s Xs

+ μI + ηhT
t htI

}

gst

+
S∑

s=1

T∑

t=1

S∑

s ′ �=s

gT
st

{(
1

S2 − λ

)

XT
s Xs′

}

gs′t

+ η

S∑

s=1

T∑

t=1

T∑

t ′ �=t

gT
sth

T
t ht′gst′ . (13)

According to the first preliminary, S >= 2, hence,
λ(S − 1) ≥ λ. We can further derive that gT E g is greater
than or equal to the following:

≥
T∑

t=1

⎧
⎨

⎩

S∑

s=1

gT
st

(
1

S2 XT
s Xs + λXT

s Xs

)

gst

+
S∑

s=1

S∑

s ′ �=s

gT
st

(
1

S2 XT
s Xs′ − λXT

s Xs′
)

gs′t

⎫
⎬

⎭

+ η

S∑

s=1

⎧
⎨

⎩

T∑

t=1

gT
sth

T
t htgst +

T∑

t=1

T∑

t ′ �=t

gT
sth

T
t ht′gst′

⎫
⎬

⎭

+ μ

S∑

s=1

T∑

t=1

gT
stgst. (14)

Let us, respectively, denote block vector vs = (1/S)Xsgst,
block vector ut = htgst, and block vector zs = √

λXsgst.
We can restate the above formulas as follows:

=
T∑

t=1

⎧
⎨

⎩

⎧
⎨

⎩

S∑

s=1

vT
s vs +

S∑

s=1

S∑

s ′ �=s

vT
s vs′

⎫
⎬

⎭

+
⎧
⎨

⎩

S∑

s=1

zT
s zs −

S∑

s=1

S∑

s ′ �=s

zT
s zs′

⎫
⎬

⎭

⎫
⎬

⎭

+η

S∑

s=1

⎧
⎨

⎩

T∑

t=1

uT
t ut +

T∑

t=1

T∑

t ′ �=t

uT
t ut′

⎫
⎬

⎭
+ μ

S∑

s=1

T∑

t=1

gT
stgst.

(15)

Based upon the second and third preliminaries, (15) is larger
than or equal to the following:

≥ μ

S∑

s=1

T∑

t=1

gT
stgst = μ

S∑

s=1

T∑

t=1

‖ gst ‖2> 0. (16)
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Fig. 2. Statistics of our selected data set. (a) Age distribution of the subjects at the baseline time. (b) and (c) Cognitive score progression along time in
terms of MMSE and ADAS-Cog. It is worth emphasizing that some time points do not have cognitive scores.

According to the definition of positive definite matrix, we
drive that E is a positive definite matrix. Consequently, E is
invertible.

IV. DATA SET

A. Data Collection

To verify the effectiveness and efficiency of our proposed
progression model, we conducted experiments on the
real-world data sets available from the AD Neuroimaging
Initiative6 (ADNI). In this paper, the date when the patient
performs the screening in the hospital for the first time
is called baseline, and the time point for the follow-up
visits is denoted by the duration starting from the baseline.
Take the notation M12 as an example. It denotes the time
point 12 months or one year after the first visit.

We verified our proposed disease progression model on AD
due to the following reasons.

1) Severity: AD is an irreversible, progressive brain disease
that slowly destroys memory and thinking skills, and
eventually even the ability to carry out the simplest tasks.
In 2010, dementia resulted in about 486 000 deaths.

2) Prevalence: Worldwide, nearly 36 million people have
AD or a related dementia,7 with a significant increase
predicted in the near future if there are no disease
altering therapeutics developed [37].

3) Mystery: The cause of AD is poorly understood to date,
especially the discriminant source of AD.

4) Accessibility: The representative AD data are available
in ADNI, which is a longitudinal multisite observa-
tional study of normal elders (NLs), mild cognitive
impairment (MCI), and AD. It has collected various
sources of each subject, such as clinical assessment,
at multiple time points. All the data are cross-linked
and made available to the general scientific community
conditioned on official request.

We requested all the data of ADNI-1, which started
from 2004. Its 822 participants were recruited from 59 sites
across the U.S. and Canada. These include 405 subjects

6http://adni.loni.usc.edu/
7http://www.alzheimers.net/resources/alzheimers-statistics/

diagnosed with MCI, 188 subjects with AD, and 229 normal
healthy control subjects, the so-called NL. Of these subjects,
58.15% are male, and 61.07% of them had been well-educated
for at least 16 years. Fig. 2(a) shows their age distribution at
the baseline time. It can be seen that the ages of majorities
range from 70 to 80 years.

In ADNI-1, we selected 818 subjects (229 NL, 401 MCI,
and 188 AD), who all received 1.5T MRI scans at baseline.
Therein, 419 subjects have another imaging modality,
FDG-PET (PET). In addition to these imaging sources, some
subjects also have nonimaging information. In particular, 818,
415, and 566 subjects, respectively, have META information,
cerebrospinal fluid (CSF), and proteomics (PROT)
measurements. An overview information of the META
data is summarized in Table I. Each selected subject has at
least two of the five data sources available: MRI and META.
Before training and testing each model, we first employed
our fast data completion method to complete the missing
sources for some specific subjects.

The MRI and PET features were extracted with the image
analysis suite FreeSurfer8 and SPM8 tool,9 respectively.
CSF features were acquired by the ADNI Biomarker
Core laboratory at the University of Pennsylvania Medical
Center [38], and PROT features were produced by the Bio-
markers Consortium Project titled Use of Targeted Multiplex
Proteomic Strategies to Identify Plasma-Based Biomarkers
in AD. Ultimately, we extracted 624-D features for each
subject with all five sources available. Table I shows the
subjects, sources, feature types, and feature dimensions of our
studied data set.

B. Data Preprocessing

Data missing is highly prevalent in chronic disease data sets.
In this paper, we consider two kinds of data missing issues,
as shown in Fig. 3. One is missing source. Due to privacy,
security, and other concerns, the participants may not provide
all their complete health information at the baseline time, such
as personal and family medical histories, demographics, and
specific body imaging scans. The other one is missing label.

8http://surfer.nmr.mgh.harvard.edu/
9http://www.fil.ion.ucl.ac.uk/spm/
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TABLE I

STATISTICS OF SOURCES, SUBJECTS, FEATURE TYPES, AND FEATURE DIMENSIONS IN THIS PAPER. WE SELECTED 818 SUBJECTS IN
TOTAL AND EACH SUBJECT HAS AT LEAST TWO SOURCES AT THE SAME TIME: MRI AND META. WE EXTRACTED 624-D

FEATURES FOR EACH SUBJECT WITH ALL FIVE SOURCES AVAILABLE. DIM MEANS FEATURE DIMENSION

Fig. 3. Illustration of missing data scenarios in our work. One scenario is the missing source, and the other is the missing label.

The health conditions of given patients are periodically eval-
uated by some standard measures. It is not unusual to take
several years to track health status and collect data for chronic
diseases. During the long-term and periodic measurement,
some patients may die or are partially absent from some time
points of health status evaluation, which causes the problem
of label missing.

One naive approach is to simply remove the patients with
missing items. This results in information loss as patients
with partial items will be abandoned. Meanwhile, this way
dramatically reduces the training size, which is prone to
a suboptimal model. Therefore, it is necessary to complete
the missing information beforehand. MF is competent for
this assignment, which is able to discover the latent features
underlying the interactions between two different kinds of
entities, such as users and products they are rating on, and is
popular in collaborative recommendation systems [39]–[42].

We denote M = [X1, X2, . . . , XS, Y] ∈ R
N×D , where

D = T + ∑S
s Ds . Xs and Y, respectively, refer to all patients

on the sth source and their health statuses at T time points. Our
target is to seek for two matrices P ∈ R

N×L and Q ∈ R
L×D ,

such that their products approximate M

M ≈ M̂ = P × Q (17)

where matrix Q is the basis matrix in the latent space,
and matrix P is the latent representation of patients in the

latent space. Equation (17) can be intuitively interpreted as
follows: the observed instances can be generated by additive
combination of underlying set of hidden basis.

To obtain the estimated value M̂i j , we multiply the i th row
of P and the j th column of Q. We have

M̂i j =
L∑

r=1

Pir Qr j . (18)

The bias between all the estimated and true values over all
nonmissing items is formulated as

ε =
∑

i j

e2
i j + γ

2
(‖ P ‖2 + ‖ Q ‖2)

=
n∑

i

d∑

j

(Mij − M̂i j )
2 + γ

2
(‖ P ‖2 + ‖ Q ‖2) (19)

where the regularization is incorporated to avoid overfitting
and γ > 0 is a regularization parameter.

A general algorithm for minimizing the objective function ε
is a gradient descent. For our problem, the gradient descent
leads to the following additive update rules:

⎧
⎪⎪⎨

⎪⎪⎩

P(t+1)
ir = P(t)

ir − α
∂ε

∂ Pir

Q(t+1)
r j = Q(t)

r j − α
∂ε

∂ Qr j

(20)
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TABLE II

NUMBER OF SUBJECTS AVAILABLE FOR MMSE AT DIFFERENT TIME
POINTS. THE ADAS-COG IS THE SAME. M18 AND M48 ARE NOT

CONSIDERED IN THIS PAPER DUE TO ITS SEVERE

MISSING LABEL PROBLEM

where the derivative results are
⎧
⎪⎪⎨

⎪⎪⎩

∂ε

∂ Pir
= −2(Mij − M̂i j )Qr j + γ Pir

∂ε

∂ Qr j
= −2(Mij − M̂i j )Pir + γ Qr j

(21)

where α is the learning rate. One intuitive solution for the
choice of learning rate is to have a constant rate. As long
as α is sufficiently small, the above updates should reduce
ε unless P and Q are at a stationary point. However, it
will take a long time to converge. Another simple rule of
thumb is to decrease the learning rate over time, (α0/1 + τ),
where α0 and τ are, respectively, the initial learning rate
and the number of epoches. However, they all suffer from
the sensitivity of initializations. In this paper, we implement
an adaptive learning rate adjuster to monitor and adjust the
learning rate α. This adjuster is triggered on each epoch. It will
shrink the learning rate if the objective goes up. The idea is that
in this case, the learning algorithm is overshooting the bottom
of the objective function. On the other hand, the adjuster will
increase the learning rate if the objective decreases too slowly.
This makes our learning rate parameter less important to the
initialized value. The initial value is set as 0.01. Though it is
not a very mathematically principled approach, it works well
in practice.

V. EXPERIMENTS

A. Experimental Settings

In our experiments, for the given subjects, we predict their
future health statuses in terms of MMSE and ADAS-Cog
scores using various sources at the baseline. MMSE and
ADAS-Cog have been shown to be correlated with the underly-
ing AD pathology and a progressive deterioration of functional
ability [2]. A larger MMSE, a lower ADAS-Cog, or both
indicate a better health status. Fig. 2(b) and (c) shows the evo-
lution of cognitive scores in terms of MMSE and ADAS-Cog,
respectively. For ADAS-Cog cognitive progression, the
AD curve grows up very fast, while the MCI curve slightly
rises within four years. When it comes to the NL curve,
it is relatively stable. A similar pattern can be observed for
the MMSE. Table II shows the number of subjects available
for MMSE and ADAS-Cog at different time points. In this
paper, we do not predict the health status at time point
M18 and M48 because of the severe missing data problem.
To compared with other prevailing approaches, we measured
the regression performance by normalized mean-squared
error (nMSE) [43], which is the mean-squared error divided

by the variance of the target

nMSE =
∑

i=1(pi − ri )
2

∑
i=1(ri − r̄)2 (22)

where pi is the predicted value, ri is the target value, and
r̄ is the average target value. In addition, we verify the
competitors utilizing the correlation coefficient (R-value)
between the predicted values and the ground truth [44]

R-value =
∑

i=1(pi − p̄)(ri − r̄)
√∑

i=1(pi − p̄)2
√∑

i=1(ri − r̄)2
(23)

where p̄ is the average predicted value. R-value always
takes a value of between −1 and 1, with 1 or −1 indicating
perfect correlation. A correlation value close to 0 indicates no
association between the variables. A good regression model
has a high R-value and low nMSE value.

The results reported in this paper were based on the tenfold
cross validation due to the small sample size. It is worth
highlighting that subjects with missing labels in the testing set
were not utilized to assess our model, even their labels were
estimated by our proposed data completion method. Take M36
as an example. 10-cross validation assigns the testing set with
approximately 81 subjects. However, only about 45 subjects
with real labels were taken for testing.

B. Comparison Among Progression Models

To examine the efficacy of the proposed disease progression
model, we comparatively verified the following state-of-the-
arts regression models in disease progression domain.

1) RR: Ridge regression (RR) is a simple approach to
estimate the future health statuses by modeling the tasks
at different time points separately [45]. It also assumes
that the sources are independent. We can write the ridge
constraint as the penalized residual sum of squares,
(yt−Xwt)2+δ ‖ wt ‖2

F . RR admits an analytical solution
given by: wt = (XT X + δI)−1XT y.

2) TGL: Zhou et al. [7] proposed a TGL model to predict
the disease progression. It captured the intrinsic related-
ness among different tasks at different time points by a
TGL regularizer. The regularizer consists of two com-
ponents, including l2,1-norm penalty on the regression
weight vectors and a temporal smoothness term, which
ensures a small deviation between two regression models
at successive time points.

3) cFSGL: A novel convex fused sparse group
lasso (cFSGL) formulation was proposed in [8]. It simul-
taneously selects task-shared and task-specific features
using the sparse group lasso penalty. Meanwhile, it
incorporates the temporal smoothness using the fused
lasso penalty. The proximal operator associated with the
optimization problem exhibits a certain decomposition
property and, thus, can be solved effectively.

4) nFGL: To reduce the shrinkage bias inherent in the con-
vex formulation, a nonconvex fused group lasso (nFGL)
model was introduced to model the disease progression
in [8, eq. (17)]. It is a composite l0.5,1-like penalty.
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TABLE III

COMPARISON OF OUR PROPOSED MODEL AND THE EXISTING STATE-OF-THE-ART BENCHMARKS ON LONGITUDINAL
MMSE AND ADAS-COG PREDICTION USING VARIOUS SOURCES. EXPERIMENTAL RESULTS ON OVERALL TASKS

AND INDIVIDUAL TASK OF EACH TIME POINT ARE REPORTED IN TERMS OF nMSE AND R-VALUE

The difference of a convex programming technique was
employed to solve the nonconvex formulations.

5) MSMT: Our proposed MSMT learning model that jointly
regularizes the source relatedness and task relatedness.

For each method mentioned above, there parameters were
carefully tuned between 10−3 to 103, and the parameters with
the best performance with respect to R-value were used to
report the final results. In particular, we first equally split our
data set into ten subsets. For each round of the tenfold cross
validation, we utilized eight subsets as training set, one as
the validation set and the rest as the testing set. We built our
model on the training set, select the optimal model based on
the validation set, and assess the performance of the selected
model on the testing set.

The experimental results are shown in Table III. From
this table, we can derive some interesting observations. First,
nMSE on ADAS-Cog is much smaller as compared against
that on MMSE. That is because the variance of ADAS-Cog
is very large. ADAS-Cog scores range from 0–70, while
MMSE scores range from 0–30. Second, the last four models
outperform RR under the same time points and all tasks.
This may be caused by the fact that all the models except
RR consider the temporal relatedness among tasks. Multiple
task learning effectively increases the number of samples by
learning multiple related tasks simultaneously, while RR treats
all tasks independently. Third, it can be observed that our
proposed MSMT is consistently and significantly better than
the current publicly disclosed disease progression models
in terms of R-value and nMSE. The reason may be that
none of the benchmark systems model the relatedness among
sources. Instead they implicitly assume that the sources are
independent. As a consequence, we can conclude that the
consistent relatedness among sources is able to reinforce
the descriptions of individual sources and, hence, enhance
the modeling performance.

One unexpected result is that some learning models on some
tasks, where the sizes of real labeled samples are relatively

small, perform surprisingly well.10 For example, the learning
performance on M24 is greater than that on M06. After
analyzing the testing subject distributions, we found it is
reasonable. The percentage of NL is changed from 28.3% in
M06 to 31.4% in M24, which results in a smaller variance
and, hence, a possible larger nMSE.

In addition, we conducted the analysis of variance
(popularly known as the ANOVA) with respect to R-value over
all the tasks. In particular, we performed paired t-test between
our model and each of the benchmarks based on tenfold cross
validation. Such analyses were carried out on the results of
MMSE and ADAS-Cog, respectively. We found that all the
p-values are much smaller than 0.05, which shows that the
improvements of our proposed disease progression model are
statistically significant.

C. On Data Preprocessing

As aforementioned, the missing of sources and labels
is not unusual in the data collection of chronic diseases.
Tables I and II, respectively, uncover these two kinds of
missing data in our studied AD data set. To evaluate the
necessity, effectiveness, and efficiency of our proposed data
preprocessing, i.e., fast data completion method, we compared
the performance of our disease progression model under the
following scenarios.

1) DEL: We simply eliminated the subjects with either
missing sources or missing labels. According to our
statistic, only 184 subjects have all the five sources, and
429 subjects have all the labels at M06, M12, M24,
and M36. To make matters worse, only 93 subjects
simultaneously have all the labels and five sources.
In fact, this is insufficient to train effective models.

2) ZERO: We assigned zero value to any element that is
missing. When the data set was first normalized to have

10Though we estimated the missing labels before the training, there exists
a certain bias between the estimated labels and the real labels.
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TABLE IV

PERFORMANCE COMPARISON AMONG DIFFERENT DATA COMPLETION
METHODS. R-VALUE AND nMSE ARE REPORTED UNDER OUR

PROPOSED DISEASE PROGRESSION MODEL. TIME REFERS

TO THE COMPUTATION TIME OF DATA COMPLETION,
WHICH IS MEASURED IN EPOCH

zero mean and unit standard deviation, this is equivalent
to mean value imputation [10].

3) KNN: The k-nearest neighbor (KNN) method replaced
the missing value in the data matrix with the corre-
sponding value from the nearest column based on META
and MRI sources. Gaussian kernel function [12] was
employed to estimate the pairwise similarity.

4) MF: The missing data was completed by our proposed
MF method without adaptive learning rate adjuster. The
learning rate was set as a sufficient small value of
0.00001 to avoid oscillation. This value was fixed across
the training process.

5) fMF: Our proposed fast MF method with adaptive
learning rate adjuster was adopted to infer the missing
items.

To ensure fair comparison among various data completion
methods, we utilized the same MSMT model after data com-
pletion. The comparative results are summarized in Table IV.
From this table, it can be seen that DEL obtains the worse
performance across different cognitive measures and evalu-
ation criteria. The possible reason is that it ignores a vast
amount of useful information and that substantially reduces
the training size, while subjects with incomplete data cannot
be investigated for disease progression. Moreover, with this
approach, the resource and time devoted to those subjects with
incomplete data are totally wasted. This set of experiments
reflects that the data completion procedure is necessary.

Both of our proposed MF and the KNN methods are
superior to ZERO. This is because ZERO does not leverage
any self or neighbor content to infer the missing values. KNN
does explore the local neighbor information, but overlooks
how well the completed matrix globally approximates the
original one. The MF methods, though complex, exhibit better
performance than others. MF is competitive with fMF with
respect to effectiveness. While in the case of efficiency, the
former cannot work as faster as the latter. This is because MF
is unable to adaptively adjust its learning rate and, thus, takes
longer time to reach convergence.

D. On Source Combination

Even though we firmly believe that the integration of
multiple sources can enhance the prediction performance of
disease progression, it is still of vital importance to quantify

TABLE V

PERFORMANCE COMPARISON AMONG DIFFERENT SOURCE
COMBINATION. R-VALUE AND nMSE ARE REPORTED

UNDER OUR PROPOSED DISEASE PROGRESSION

MODEL. p-VALUE REFERS TO THE SIGNIFICANCE

TEST RESULTS (R-VALUE UNDER MMSE)

how much it is improved as compared against single source via
our proposed MSMT learning model. As discussed previously,
each subject after data completion in this paper is described
by five sources, namely, MRI, PET, CSF, PROT, and META.
In other word, if we take every conceivable combination
of data sources into consideration, each subject has up to
31 kinds of representation (five for using one source, ten for
using two or three source combinations, five for four source
combination, and one for integrating all sources). Rather than
exhaustively examining all the source combinations, we fed
the following representative combinations into our proposed
model and validated their description power.

1) MRI, PET, CSF, PROT, and META: We utilized five
sources separately to train and test our proposed disease
progression model.

2) IMG: Imaging sources comprise of MRI and PET.
3) nIMG: Nonimaging sources compose of CSF, PROT,

and META.
4) ALL: We incorporated all the five sources into our model

simultaneously.
Notably, when learning on individual source, our MSMT
model degenerates to a multiple task learning model, which
only considers the temporal smoothness. The experimental
results are comparatively summarized in Table V. It is intuitive
that ALL obtains the best results. In addition, IMG and
nIMG are effectively ahead of other five individual sources.
Such comparison reveals that the description superiority of
the combined sources is over individual ones. Meanwhile,
we noticed that the model trained on nIMG achieved better
performance than that trained on IMG, and that META is the
most descriptive source among the five.

The last column of Table V shows the ANOVA analysis.
Based on tenfold cross validation, we compared ALL and
each of the others in terms of R-value under MMSE. We can
see that all the p-values are extremely less than 0.05. This
clearly shows that the improvements of source combination
are statistically significant.

E. On Time Complexity

The computational complexity of the training process scales
as O(N2 D3

0 T 3), where N , T and D0, respectively, refers to
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the number of subjects, the number of tasks, and the total
feature dimensions over all the sources. Usually, we consider
less than ten times points, and hence, T is very small; D0 is
in the order of a few hundreds; we studied 818 subjects.
The process can be completed in less than 1 s if we do not
take the feature extraction part into account on system with
(3.4 GHz and 16-G memory).

VI. CONCLUSION

This paper studied the progression modeling of chronic
diseases by exploring imaging and nonimaging sources at the
baseline time. In particular, we formulated the progression
prediction as an MSMT regression problem by jointly
optimizing: source consistency and temporal smoothness.
We theoretically proved that our proposed model is a linear
model and empirically demonstrated its efficiency. Before
training our model, the MF technique was adopted to alleviate
the data missing problem, where the learning rate was tuned
adaptively. In addition, we successfully applied our model to
the real-world AD sufferers, and it showed superiority over
other state-of-the-art approaches.

In this paper, we did not analyze the source confidences
and the feature representativeness within each source, which
is able to facilitate the discriminant biomarker identification.
We plan to explore these two lines of research in the near
future.
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